UA Science

You are here

9/16/13 Public Evening Lecture Series

Date: 
Monday, September 16, 2013 - 7:30pm to 10:00pm
Room: 

Dr. Christopher Greer
Steward Observatory
Imaging a Black Hole from the South Pole

12/02/13 Public Evening Lecture Series

Date: 
Monday, December 2, 2013 - 7:30pm to 10:00pm
Room: 

Dr. Beatrice Mueller
Planetary Science Institute
ISON --- an Unusual Sungrazing Comet

10/24/13 Meredith Hughes SO/NOAO Joint Colloquium Series

Date: 
Thursday, October 24, 2013 - 4:00pm to 5:00pm
Room: 

Dr. Meredith Hughes, Wesleyan University

"Planet Formation through Radio Eyes"

10/31/13 Alan Dressler SO/NOAO Joint Colloquium Series

Date: 
Thursday, October 31, 2013 - 4:00pm to 5:00pm
Room: 

Dr. Alan Dressler, Carnegie Observatories, Pasadena, Calif
“Infalling groups and galaxy evolution in the IMACS Cluster Building Survey”

apod.nasa.org

An iconic colorful cloud of gas and dust - the remains of an ancient violent cosmic event- is finally revealing its dynamic nature thanks to a newly released video more than a decade in the making.

Image: NASA/JPL

A new study published in Nature this week describes the forces that control the jets of water and organic material that erupt from the icy surface of Enceladus, a moon of Saturn. UA scientists contributed data to the study.

An infrared map of the whole Galaxy .

New data released by the Sloan Digital Sky Survey's APOGEE project, which uses technology UA scientists helped develop, enables astronomers to better understand how the Milky Way formed.

The instrument that will form the heart of NASA's James Webb Space Telescope, or JWST, has been assembled and tested by aerospace company Lockheed Martin...  

Artist Impression of the James Webb Space Telescope - credit: NASA/ESA

Lockheed Martin Ships NIRCam For JWST to NASA Goddard SFC

Palo, Alto, Calif., July 25, 2013 – Lockheed Martin [NYSE: LMT], under a contract from the University of Arizona, has completed assembly and testing of the Near Infrared Camera (NIRCam) and has shipped the instrument to the NASA Goddard Space Flight Center in Greenbelt, Md. NIRCam is the prime near-infrared imaging instrument for NASA’s James Webb Space Telescope (JWST).
The James Webb Space Telescope is NASA's next-generation space observatory and successor to the Hubble Space Telescope. The most powerful space telescope ever built, JWST will observe the most distant objects in the universe, provide images of the very first galaxies ever formed, provide insight to how solar systems evolve and help explore planets around distant stars. The Webb telescope is a joint project of NASA, the European Space Agency, and the Canadian Space Agency.
The University of Arizona and Lockheed Martin are responsible for the NIRCam instrument design (Optical, Mechanical, Structural, Thermal, Electronic, Precision Mechanisms and Control Software) as well as the instrument control and focal plane electronics and software. In addition to Lockheed Martin and the University of Arizona, the NIRCam team comprises Teledyne Imaging Sensors of Camarillo, Calif. and a team of science co-investigators.
“It is very satisfying to have completed assembly and testing of this magnificent astrophysical instrument,” said Jeff Vanden Beukel, Lockheed Martin NIRCam program director at the Advanced Technology Center. “We all feel privileged to have worked on this mission and look forward to the day when our engineering and manufacturing efforts will help produce discoveries yielding a greater understanding of the Universe.”
“As we view the Universe with more powerful tools, not only do we confirm or overturn current concepts, but we always learn new and exciting things,” said Dr. Marcia Rieke of the University of Arizona and NIRCam principal investigator. “I couldn’t be happier that we’ve reached this milestone. I’m certain that all of the hard work and terrific collaboration of the NIRCam team will lead to a very big payoff not too far down the line.”
NIRCam will detect light from the earliest stars and galaxies in the process of formation; young stars in the Milky Way; physical and chemical properties of planets orbiting other stars; and objects within our Solar System. The camera is equipped with coronagraphs, (instruments that allow astronomers to take pictures of very faint objects around a central bright object, like planets around distant stars.) The NIRCam coronagraphs work by blocking a brighter object's light, making it possible to view the dimmer object nearby – just as shielding the sun from your eyes with your hand allows you to focus on the view in front of you. Astronomers hope to determine the characteristics of planets orbiting nearby stars. NIRCam is not only a science camera, but also the wavefront sensor responsible for keeping the telescope mirrors in phase and focused for all the other science instruments.
The NIRCam instrument consists of two identical optical imaging modules and contains focal plane assemblies (FPA) assembled at the University of Arizona using detectors provided by Teledyne. The FPA hardware consists of 40 million pixels, and is designed for cryogenic operation at 35 Kelvin, or approximately -400 degrees Fahrenheit. The FPA hardware requires regulated power, output data synchronization, temperature control and operational mode controls as well as image data conditioning, amplification and digitization. The NIRCam focal plane electronics (FPE) and its associated software will provide these functions. The FPE hardware and software also convey the image data to the JWST integrated science instrument module command and data handling computer.
The NASA Goddard Space Flight Center manages the JWST project. Principal Investigators under contract to NASA, ESA, and CSA are developing scientific instruments for the observatory. The Space Telescope Science Institute in Baltimore, Md. is developing the ground system for the mission and will be responsible for observatory operations and science program management.
NIRCam is one of the scientific instruments managed by Lockheed Martin's Civil Space line of business. The instrument was designed and built at the ATC in Palo Alto, Calif. The ATC is the research and development organization of Lockheed Martin Space Systems Company (LMSSC). LMSSC, a major operating unit of Lockheed Martin Corporation, designs and develops, tests, manufactures and operates a full spectrum of advanced-technology systems for national security and military, civil government and commercial customers. Chief products include human space flight systems; a full range of remote sensing, navigation, meteorological and communications satellites and instruments; space observatories and interplanetary spacecraft; laser radar; ballistic missiles; missile defense systems; and nanotechnology research and development.
Headquartered in Bethesda, Md., Lockheed Martin is a global security and aerospace company that employs about 116,000 people worldwide and is principally engaged in the research, design, development, manufacture, integration, and sustainment of advanced technology systems, products, and services. The Corporation’s net sales for 2012 were $47.2 billion.

The South Pole Telescope will join the Event Horizon Telescope project in coming years to image the area around the black hole at the center of the Milky Way.

Incredible technology: How to see an invisible black hole

Black holes are essentially invisible, but astronomers are developing technology to image the immediate surroundings of these enigmas like never before. Within a few years, experts say, scientists may have the first-ever picture of the environment around a black hole, and could even spot the theorized "shadow" of a black hole itself.

Black holes are hard to see in detail because the large ones are all far away. The closest supermassive black hole is the one thought to inhabit the center of the Milky Way, called Sagittarius A* (pronounced "Sagittarius A-star"), which lies about 26,000 light-years away. This is the first target for an ambitious international project to image a black hole in greater detail than ever before, called the Event Horizon Telescope (EHT).

The EHT will combine observations from telescopes all over the world, including facilities in the United States, Mexico, Chile, France, Greenland and the South Pole, into one virtual image with a resolution equal to what would be achieved by a single telescope the size of the distance between the separated facilities. [The Strangest Black Holes in the Universe]

"This is really an unprecedented, unique experiment," said EHT team member Jason Dexter, an astrophysical theorist at the University of California, Berkeley. "It's going to give us more direct information than we've ever had to understand what happens extremely close to black holes. It's very exciting, and this project is really going to come of age and start delivering amazing results in the next few years."

From Earth, Sagittarius A* looks about as big as a grapefruit would on the moon. When the Event Horizon Telescope is fully realized, it should be able to resolve details about the size of a golf ball on the moon. That's close enough to see the light emitted by gas as it spirals in toward its doom inside the black hole.

Very long baseline interferometry
To accomplish such fine resolution, the project takes advantage of a technique called very long baseline interferometry (VLBI). In VLBI, a supercomputer acts as a giant telescope lens, in effect.

"If you have telescopes around the world you can make a virtual Earth-sized telescope," said Shep Doeleman, an astronomer at MIT's Haystack Observatory in Massachusetts who's leading the Event Horizon Telescope project. "In a typical telescope, light bounces off a precisely curved surface and all the light gets focused into a focal plane. The way VLBI works is, we have to freeze the light, capture it, record it perfectly faithfully on the recording system, then shift the data back to a central supercomputer, which compares the light from California and Hawaii and the other locations, and synthesizes it. The lens becomes a supercomputer here at MIT."

A major improvement to the Event Horizon Telescope's imaging ability will come when the 64 radio dishes of the ALMA (Atacama Large Millimeter/submillimeter Array) observatory in Chile join the project in the next few years.

"It's going to increase the sensitivity of the Event Horizon Telescope by a factor of 10," Doeleman said. "Whenever you change something by an order of magnitude, wonderful things happen." [Photos: ALMA Inaugurated in Chile]

Very long baseline interferometry has been used for about 50 years, but never before at such a high frequency, or short wavelength, of light. This short-wavelength light is what's needed to achieve the angular resolution required to measure and image black holes.

Grand technical challenge
Pulling off the Event Horizon Telescope has been a grand technical challenge on many fronts.

To coordinate the observations of so many telescopes spread out around the world, scientists have needed to harness specialized computing algorithms, not to mention powerful supercomputers. Plus, to accommodate the time difference between the various stations, extremely accurate clocks are needed.

"We had to prove you could keep time well enough at all the stations, and that the detectors at all the telescopes were good enough, that when you multiply the two signals from two telescopes you wouldn’t get just noise," said Dan Marrone, an astronomer at the University of Arizona's Steward Observatory who's building a receiver to enable the South Pole Telescope to join the project. [No Escape: Dive Into a Black Hole (Infographic)]

The researchers have been using atomic clocks made of what's called hydrogen masers to keep time to an accuracy of about a trillionth of a second per second.

"We use this property of the structure of the hydrogen atom to create a fundamental time reference for us that transitions between two states of the electron in a hydrogen atom," Marrone said. "It creates a low-frequency signal that through careful design you can make a very precise oscillator. It creates very perfect oscillations for a short time period. That means we can average our data over those time periods because they will all have kept time very perfectly."

Testing general relativity
With the unprecedented data soon to be collected by the Event Horizon Telescope, scientists are hoping to better understand the strange physics of black holes, which are some of the most extreme, bizarre objects in the universe.

The black hole at the center of the Milky Way is thought to contain the mass of about 4 million suns, all packed into an incomprehensibly small area. The ultra-strong densities there should produce some very extreme gravitational forces that offer a rare test of Einstein's general theory of relativity.

"The Event Horizon Telescope is going to look at emission at the edge of the black hole itself," Doeleman said. "That's an area where the gravity is so strong that light is bent and the structures you see are dominated by strong gravity, where you absolutely need Einstein to understand what you're seeing. It becomes a laboratory of extremes."

One question scientists hope to answer is whether black holes really have event horizons, as predicted by general relativity. An event horizon is a theorized boundary around a black hole that marks the "point of no return" where matter and even light can't escape. If event horizons exist, general relativity also predicts black holes will have shadows, or darkened regions where light has been swallowed. If black holes do produce shadows, the Event Horizon Telescope should be able to see one at Sagittarius A* within the next few years, said Dexter, the University of California, Berkeley, theorist.

"That would be the most extreme general relativistic effect detected so far," he added.

X-raying black holes
While the Event Horizon Telescope is observing black holes in radio wavelengths, the other frontier of black hole astronomy is in the X-ray regime.

The gas falling into black holes emits light across the electromagnetic spectrum, but the hottest, most energetic gas, which is swirling closest to a black hole's event horizon, can be seen in X-ray light.

This light is only visible beyond the atmosphere of Earth, to space telescopes such as NASA's Chandra observatory and NuSTAR telescope, Europe's XMM Newton observatory, and Japan's Suzaku telescope. These observations aren't directly imaging the environs of black holes, like the Event Horizon Telescope, but are breaking up X-ray light into its constituent colors, or wavelengths, to search for clues about what's happening to the gas in those extreme environments.

For example, astronomer Chris Reynolds of the University of Maryland, College Park, uses X-ray observations to study the spins of black holes. "Because the physics is so extreme, when a black hole spins, it actually twists up the space-time around it and we can see the effect it has on gas orbiting the black hole," Reynolds said.

And by studying black holes in various wavelengths, researchers hope to build up a more complete understanding of these strange cosmic objects.

"The gas, as it falls into a black hole, emits radio waves, which is what the Event Horizon Telescope is trying to see, and it also makes X-rays, and that gives you very complementary views on the properties of the infalling gas and the black hole," Reynolds said. "The Event Horizon Telescope is on the threshold of some extremely close results, and we're all looking forward to it."

Pages

Subscribe to Department of Astronomy<br /> and Steward Observatory RSS
For the public
For Public

Public events include our Monday Night Lecture Series, world-reknowned Astronomy Camp and Mt Lemmon Sky Center.

For Students

A good place to start if you want to become an undergrad major or grad student, or need to find our schedule of classes.

 

For Scientists
For Scientists

Find telescopes and instruments, telescope time applications, staff and mountain contacts, and faculty and staff scientific interests.