$\boldsymbol{\zeta}$ Ophiuchi as anchor point for massive binary evolution

Mathieu Renzo & Ylva Götberg

ASA, JPL-Caltech, Spitzer Space Telescope

ζ Ophiuchi is the nearest O-type star to Earth: lots of data!

- Extreme surface rotation $v \sin(i) \gtrsim 350 \, \mathrm{km \ s^{-1}}$
- $(T_{\rm eff}, L)$ position
- $Z \simeq Z_{\odot}$
- ${}^{4}\text{He}$ and ${}^{14}\text{N}$ rich
- Roughly solar $^{12}\mathrm{C}$ and $^{16}\mathrm{O}$
- High space velocity $20\,km\;s^{-1} \lesssim \nu_{pec} \lesssim 50\,km\;s^{-1} \qquad \Rightarrow$ bow shock
- X Weak wind problem:

 $\log_{10}(|\dot{M}_{\rm observed}|) \simeq -8.8 \ll \log_{10}(|\dot{M}_{\rm theory}|) \simeq -6.8 \qquad [{\rm M}_{\odot} \ {\rm yr}^{-1}]$

ζ Ophiuchi is the nearest O-type star to Earth: lots of data!

- Extreme surface rotation $v \sin(i) \gtrsim 350 \, \mathrm{km \ s^{-1}}$
- $(T_{\rm eff}, L)$ position
- $Z \simeq Z_{\odot}$
- ${}^{4}\text{He}$ and ${}^{14}\text{N}$ rich
- Roughly solar $^{12}\mathrm{C}$ and $^{16}\mathrm{O}$
- High space velocity $20\, \rm km~s^{-1} \lesssim \nu_{pec} \lesssim 50\, \rm km~s^{-1} \qquad \Rightarrow$ bow shock
- X Weak wind problem:

 $\log_{10}(|\dot{M}_{\rm observed}|) \simeq -8.8 \ll \log_{10}(|\dot{M}_{\rm theory}|) \simeq -6.8 \qquad [{\rm M}_{\odot} \ {\rm yr}^{-1}]$

Rotational mixing does not seem to work! Tested with Geneva and Brussels models

Villamàriz & Herrero 05, van Rensbergen et al. 96

Herrero et al. 92, Villamàriz & Herrero 05, Marcolino et al. 09, Lux et al. 20

Evolutionary path

Most common massive binary evolution path

Credits: ESO, L. Calçada, M. Kornmesser, S.E. de Mink

Spin up, pollution, and rejuvenation

The binary disruption shoots out the accretor

Spin up: Packet '81, Cantiello *et al.* '07, de Mink *et al.* '13 Pollution: Blaauw '93 Rejuvenation: Hellings '83, Schneider *et al.* '15

Evolutionary path

Does this applies to ζ Ophiuchi?

We can trace it back to the neutron star formed by the companion explosion

A nearby recent supernova that ejected the runaway star ζ Oph, the pulsar PSR B1706-16, and ⁶⁰Fe found on Earth

R. Neuhäuser,^{1*}, F. Gießler¹, and V.V. Hambaryan^{1,2} ¹Astrophysikalisches Institut und Universitäts-Sternwarte Jena, Schillergüßchen 2-3, 07745 Jena, Germany ²Byurakan Astrophysical Observatory, Byurkan 0213, Aragatzaton, Armenia

Accepted 2019 Sep 10. Received 2019 Sep 3; in original form 2019 July

SN explosion ${\sim}1.78\pm0.21\,\text{Myr}$ ago

Neuhäuser et al. 19, see also van Rensbergen et al. 96, Hoogerwerf et al. 01, Lux et al. 20

Self-consistent binary model

Current best MESA model

 $M_1 = 25 M_{\odot}$

$$M_2 = 17 M_{\odot}$$

P = 100 daysZ = 0.01

Spatial peculiar velocity & mass

7

Spatial peculiar velocity & mass

Hertzsprung-Russel diagram of both stars

Hertzsprung-Russel diagram of both stars

Self-consistent binary model

Rotation

Hertzsprung-Russel diagram: accretor rotation

Surface rotation rate

• but overestimating by ${\sim}100{\times}$ wind mass loss!

Surface rotation rate

• but overestimating by ${\sim}100{\times}$ wind mass loss!

- Decreasing the wind yields $\omega/\omega_{\rm crit}>1$

10

Self-consistent binary model

Surface composition

Hertzsprung-Russel diagram: helium surface abundance

Composition profile: comparison with rotating single stars

Composition profile: comparison with rotating single stars

Composition profile: comparison with rotating single stars

"Hunter" diagram

Self-consistent binary model

Mass transfer rate

Mass transfer history: $\Delta t_{\text{RLOF}} \simeq 2 \times 10^4$ years

15

Outlook and Todos

Take home points

- ζ Oph is a runaway from the binary SN scenario we know the associated pulsar, birth location, kinematic age
- Accretor ≠ single star rotating since ZAMS composition and rotational profiles very different

· Modeling accretors is difficult

because of rotation and mixing in both stars, and mass transfer

Ongoing and future steps

Parameter variations:

- Vary M_1 , M_2 , P and Z at fixed physics assumptions
- Vary J-transport e.g., Langer et al. 98, Zhao & Fuller 20
- Vary RLOF-parameters?
- X Vary J-accretion: extremely noisy tracks
- \checkmark Decrease \dot{M}
- ... more?

What would observers want to have from such models?

Backup slides

Accreting angular momentum from a disk

Evolution of composition profile

Internal mixing at selected times

Spatial resolution test

