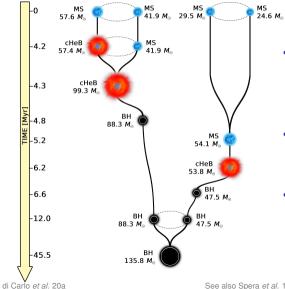

The stellar merger scenario for BHs in the pair-instability gap

M. Renzo, M. Cantiello, B. D. Metzger, Y.-F. Jiang (姜燕飞)

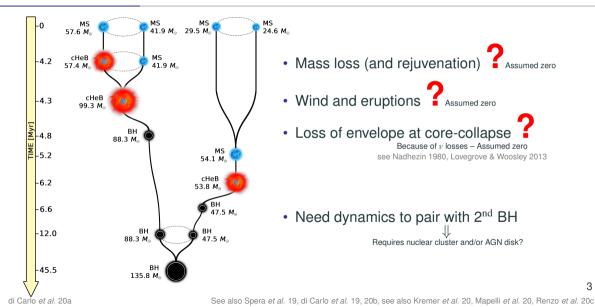
arXiv:2010.00705


GW reveal a BH population in the gap

97.1
$$^{+1.7}_{-3.4}$$
% have $M_1 < 45 M_{\odot}$

2

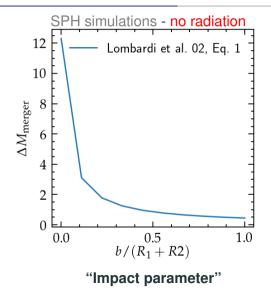
The "stellar merger scenario"


 Make a star with a small core and oversized envelope to avoid PPISN

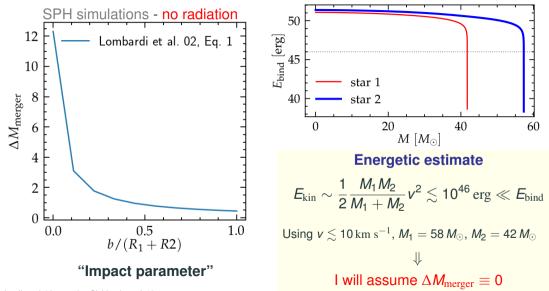
Collapse it to a BH in the gap

• Pair it in a GW source with dynamics

See also Spera et al. 19, di Carlo et al. 19, 20b, see also Kremer et al. 20, Mapelli et al. 20, Renzo et al. 20c

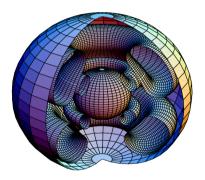

Four challenges of the "stellar merger scenario"

1st challenge: the merger


Mass and angular momentum budget

Estimates of mass loss for stellar collisions: $\Delta M_{merger} \lesssim 10\%$

Lombardi et al. 02, see also Glebbeek et al. 13


Estimates of mass loss for stellar collisions: $\Delta M_{merger} \lesssim 10\%$

4

Lombardi et al. 02, see also Glebbeek et al. 13

Angular momentum distribution

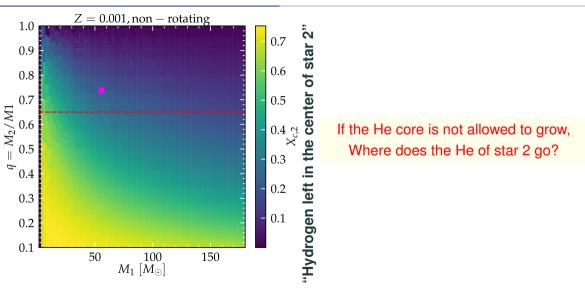
Maeder & Meynet 2000

Possible issues

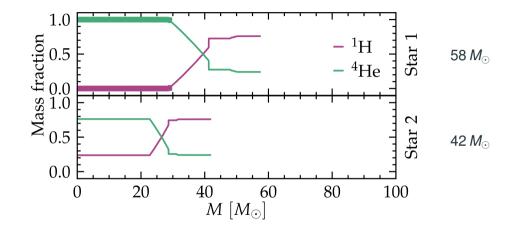
• Surface: Centrifugally driven mass loss

Heger et al. 00

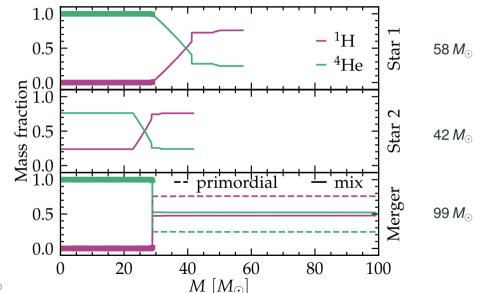
• Core: Core-growth by mixing


de Mink et al. 09, de Mink & Mandel 16, Marchant et al. 16

↓ I will assume no rotation

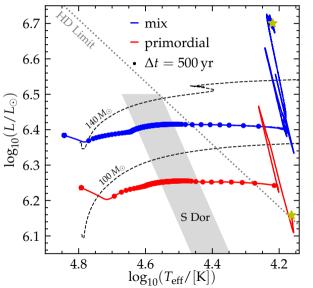

Making a merger with MESA

A very simple approach


Very massive stars have very similar lifetimes

Merger model from two stars

Merger model in two steps: (1) grow mass and (2) set composition


Renzo, Cantiello et al. 20

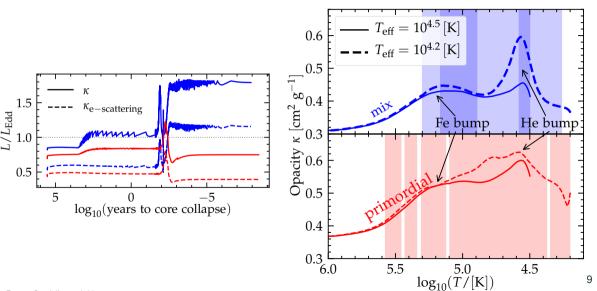
7

2nd challenge: the evolution

Keeping the mass on the star

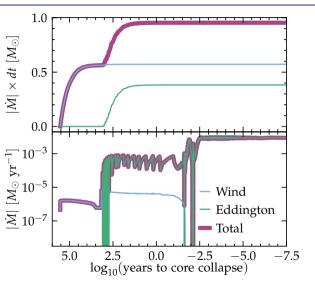
Merger products are He-rich and blue \Rightarrow envelope instabilities?

Very massive stars are hardly stable


- + $\sim 10^5\, years$ in S Dor instability strip
- reach core-collapse as BSG

\Downarrow

· LBV eruptions, aided by He opacity?


Jiang et al. 18

Eddington ratio and Opacity structure

Renzo, Cantiello et al. 20

The estimated radiation-driven mass loss is not significant

$$\dot{M} = \frac{L - L_{\rm Edd}}{v_{\rm esc}^2}$$

 $L > L_{\rm Edd}$ only for few 100 years

(higher $Z \Rightarrow$ higher $\kappa \Rightarrow$ higher \dot{M})

3rd challenge: BH formation

What is the fate of the H-rich envelope?

Do BHs form via a failed, weak, or full blown SN explosion? (Work in progress)

Possible causes for mass ejection at BH formation:

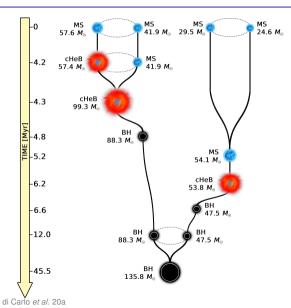
• *v*-driven shocks

Nadhezin 80, Lovegrove & Woosley 14, Fernandez et al. 18

• Jets, (even without net rotation)

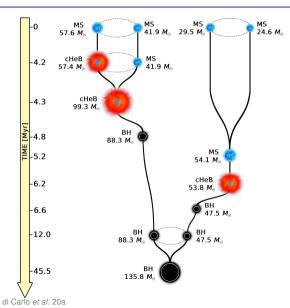
Gilkis & Soker 2014, Perna et al. 18, Quataert et al. 19

· weak fallback powered explosion


Ott et al. 18, Kuroda et al. 18, Chan et al. 20

see also Adams et al. 17 for possible EM counterpart to BH formation

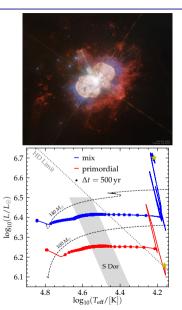
4th challenge: forming a binary BH


Dynamics needed

Massive BHs are dynamically active: short merger time or cluster ejection

- $\tau_{\rm merger} \simeq {\rm few} \times 10 \, {\rm Myr}$
- 6% of BH formed at Z < 0.002 have masses in the gap ($\lesssim 1\%$ at Z_{\odot})
- · depends also on initial cluster density

Massive BHs are dynamically active: short merger time or cluster ejection

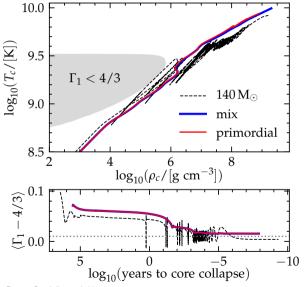

- $\tau_{\rm merger} \simeq {\rm few} \times 10 \, {\rm Myr}$
- 6% of BH formed at Z < 0.002 have masses in the gap ($\lesssim 1\%$ at Z_{\odot})
- · depends also on initial cluster density

GW190521

 $M_1 = 85^{+21}_{-14} M_{\odot} \qquad M_2 = 66^{+17}_{-18} M_{\odot}$ both in the PISN gap \downarrow Stellar merger scenario twice **?** **Conclusions**

Take home points

The stellar merger scenario is speculative


- Similar lifetimes of massive stars \Rightarrow where does the He go?
- If He mixed in the envelope \Rightarrow BSG with high $L/L_{\rm Edd}$
- Estimated $\Delta M_{
 m radiation} \lesssim$ 1 M_{\odot} at Z=0.0002

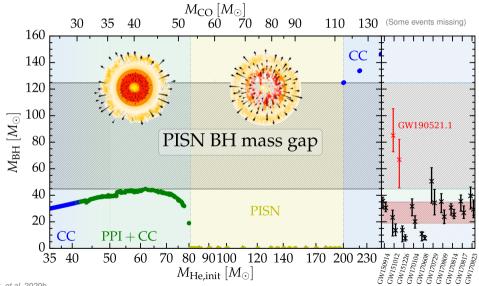
Renzo, Cantiello, et al. 20, arXiv:2010.00705

· Need better simulations of merger process and BH formation

Backup slides

Core evolution of merger models

By construction avoid PPISN


$$\langle \Gamma_1 \rangle = \frac{\int_0^{R_*} P(r) \Gamma_1(r) \, dr}{\int_0^{R_*} P(r) \, dr} > 4/3$$

$$\Downarrow$$

Global stability against pair-production

Renzo, Cantiello et al. 20

The pair-instability BH mass gap

Renzo, Farmer, et al. 2020b