Binary evolution and supernova kicks Mathieu Renzo

SF

Initial close binary

see outreach movie at

see outreach movie at

Initial close binary

Orbit Widens

see outreach movie at

Stripped star + Accretor

Core Collapse & Disruption

see outreach movie at

How common is "common"?

What exactly disrupts the binary?

What exactly disrupts the binary?

Kicks do not change companion velocity

BH kicks from the mass of runaways

Mass-velocity varying the natal kick

Renzo et al. 19b, (see also Dray et al. 2006 for WR runaways)

Numerical results publicly available at:

Kicks constraints from XRBs astrometry

Post-SN velocity of surviving binaries

Velocity respect to the pre-explosion binary center of mass

Numerical results publicly available at:

Preliminary: The case of 4U1700-37

 $M\simeq 2.5\,M_\odot$, $M_*\simeq 60\pm 10\,M_\odot$, $P\simeq 3.4\,{
m days}$, $e\simeq 0.22$, $v\simeq 60\,{
m km}\,{
m s}^{-1}$

van der Meij, D.-F. Guo, et al. (incl. MR), in prep.

Preliminary: The case of 4U1700-37

 $M\simeq 2.5\,M_\odot$, $M_*\simeq 60\pm 10\,M_\odot$, $P\simeq 3.4\,{
m days}$, $e\simeq 0.22$, $v\simeq 60\,{
m km}\,{
m s}^{-1}$

van der Meij, D.-F. Guo, et al. (incl. MR), in prep.

Preliminary: The case of 4U1700-37

 $M\simeq 2.5\,M_\odot$, $M_*\simeq 60\pm 10\,M_\odot$, $P\simeq 3.4\,{
m days}$, $e\simeq 0.22$, $v\simeq 60\,{
m km~s^{-1}}$

van der Meij, D.-F. Guo, et al. (incl. MR), in prep.

Take home points

Natal kicks cause the disruption of 86^{+11}_{-22} % of massive binaries

For disrupted binaries the kick acts only on compact object ⇒ walkaways outnumber the runaways;

Runaway mass distribution \Rightarrow constraints on BH kicks without seeing the collapse nor the BH. ¹⁰

Backup slides

Methods: Population Synthesis

 $\mathsf{Fast} \Rightarrow \mathsf{Allows}\ \mathsf{statistical}\ \mathsf{tests}\ \mathsf{of}\ \mathsf{the}\ \mathsf{inputs}\ \&\ \mathsf{assumptions}$

Initial Distributions

Velocity distribution: Runaways

Velocity respect to the pre-explosion binary center of mass

Numerical results publicly available at:

Renzo et al. 19b

Velocity distribution: Walkaways

Velocity respect to the pre-explosion binary center of mass

Numerical results publicly available at:

Renzo et al. 19b

Velocity distribution: Walkaways

Velocity respect to the pre-explosion binary center of mass

Numerical results publicly available at:

Star forming region velocity dispersion

Velocity distribution log-scale

Velocity post-main sequence stars

pre-CC mass distribution

pre-CC separation distribution

How far do they get?

