

Massive stars as cosmic engines:

Commitment to companion(s), and implications for GW astronomy

Mathieu Renzo

Bin

Collaborators: S. E. de Mink, E. Zapartas, Y. Götberg, F. R. N. Schneider, R. G. Izzard, H. Sana, R. Farmer, S. Justham, S. N. Shore, C. D. Ott

Nucleosynthesis & Chemical Evolution

Star Formation

Ň

Ionizing Radiation

 $L \propto M^{\alpha}, \alpha > 0$

Supernovae

GW Astronomy

NASA, JPL-Caltech, Spitzer Space Telescope

Why are massive stars interesting?

Nucleosynthesis & Chemical Evolution

Star Formation

Ionizing Radiation

Supernovae

GW Astronomy

NASA, JPL-Caltech, Spitzer Space Telescope

${\sim}70\%$ of O type stars are in close binaries

(e.g., Mason *et al.* '09, Sana & Evans '11, Sana *et al.* '12, Kiminki & Kobulnicky '12, Kobulnicky *et al.* '14, Almeida *et al.* '16)

\sim 10% of O type stars are runaways ($\nu\gtrsim30\,{\rm km~s^{-1}}$)

(e.g., Blaauw '61, Gies '87, Stone '91)

Different behaviors with M_{ZAMS} and/or M_{He} IMF $(M) \propto M^{-2.3}$

cf. Woosley 2017

 $M_{\rm He}$ governs the fate, determines $M_{\rm BH}$

Stellar winds: NS or BH?

Line driving mechanism

Core Collapse in a Binary

Massive "widowed" stars

Pulsational Pair Instability

• BH mass function above \sim 30 M_{\odot}

Problems: High Non-Linearity and Clumpiness

Inhomogeneities: $f_{\rm cl} \stackrel{\rm def}{=} \frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2} \neq 1 \Rightarrow \dot{M} \neq 4\pi r^2 \rho v(r)$

Risk:

Possible overestimation of the wind mass loss rate

Inhomogeneities: $f_{\rm cl} \stackrel{\text{def}}{=} \frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2} \neq 1 \Rightarrow \dot{M} \neq 4\pi r^2 \rho v(r)$

Mass loss in MESA

Figure: from N. Smith 2014, ARA&A, 52, 487

Combination of algorithms

Wind mass loss history

$$\begin{array}{c} \eta = 1.0 \\ \dots \eta = 0.33 \\ \dots \eta = 0.1 \\ \hline V-dJ \\ \hline V-vL \\ \hline V-vL \\ \hline V-NJ \\ \hline K-NJ \\ \hline K-dJ \end{array}$$

Renzo et al., arXiv:1703.09705 9/42

Wind mass loss history

^{9/42}

Impact on the final mass

Impact on the final mass

Pre-explosion appearance

ANTON PANNEKOEK INSTITUTE

Renzo et al., arXiv:1703.09705

"Explodability" & Compactness

 $\xi_{\mathcal{M}}(t) \stackrel{\mathrm{def}}{=} rac{\mathcal{M}/M_{\odot}}{R(\mathcal{M})/1000 \ \mathrm{km}}$

• "Large" $\xi_{2.5} \Rightarrow$ harder to explode \Rightarrow BH formation • "Small" $\xi_{2.5} \Rightarrow$ easier to explode \Rightarrow NS formation

(e.g., O'Connor & Ott '11, Ugliano *et al.* '12, Sukhbold & Woosley '14, Ertl *et al.* '16)

not to scale!

 $R(\mathcal{M})$

"Explodability" & Compactness

 $\xi_{\mathcal{M}}(t) \stackrel{\mathrm{def}}{=} rac{\mathcal{M}/M_{\odot}}{R(\mathcal{M})/1000 \mathrm{~km}}$

• "Large" $\xi_{2.5} \Rightarrow$ harder to explode \Rightarrow BH formation • "Small" $\xi_{2.5} \Rightarrow$ easier to explode \Rightarrow NS formation

$$R(\mathcal{M})$$

Critical point: Ne core burning/C shell burning

 $\xi_{2.5}$ @ O depletion

0.250 no expl. 0.240 0.230 BH, 0.220 0.210 ξ^{O depl} ξ2.5 0.200 0.190 0.180 0.170 0.160 **SN** 0.150 0.140 0.170 15 25 30 20 $M_{\rm ZAMS} [M_{\odot}]$

Renzo et al., arXiv:1703.09705 15/42

$\xi_{2.5}$ @ Oxygen Depletion

Post O burning evolution

Si shell burning \rightarrow

 ${\sim}30\%$ Uncertainty in $\xi_{\rm 2.5}^{\rm pre-SN}$

$M_{\rm ZAMS} [M_{\odot}]$	η	ID	$\tilde{\zeta}_{2.5}^{\text{pre}-SN}$	$M_4 [M_\odot]$	μ_4	$M_{ ho_6}$ $[M_{\odot}]$	$M_{ m CO} [M_{\odot}]$	$M_{\rm Fe}~[M_\odot]$
15	1.0	V-NJ K-vL	0.103 0.132	1.71 1.78	0.045 0.051	1.68 1.79	2.91 3.07	1.39 1.50
25	0.33	V-vL K-dJ	0.227 0.308	1.73 2.05	0.084 0.100	1.84 2.19	6.38 6.40	1.51 1.63
30	0.33	V-dJ K-NJ	0.358 0.276	1.60 1.82	0.163 0.100	2.21 1.98	7.98 7.90	1.56 1.58

Renzo et al., arXiv:1703.09705 17/42

ANTON PANNEKOEK INSTITUTE

Uncertainties in stellar winds:

- pre-SN mass \Rightarrow no $M_f \equiv M_f(M_{\text{ZAMS}})$ map;
- core structure \Rightarrow "explodability" & remnant.

ANTON PANNEKOEK INSTITUTE

Stellar winds: NS or BH? • Line driving mechanism

Core Collapse in a Binary Massive "widowed" stars

Pulsational Pair Instability BH mass function above ~ 30 M_☉

Initial close binary

Binary disruption

Initial close binary

Orbit Widens

Binary disruption

Initial close binary

Stripped star + Accretor

Binary disruption

Stripped star + Accretor

Core Collapse & Disruption

Spin up, pollution, and rejuvenation

ANTON PANNEKOEK INSTITUTE

Binary interactions modify the star to be ejected

e.g., Packet '81, Cantiello et al. '07, de Mink et al. '13

Ň

Ň

What exactly disrupts the binary? $\gtrsim 80\%$ of binaries are disrupted

Unbinding Matter

(e.g., Blaauw '61)

• Ejecta Impact

(e.g., Wheeler et al. '75,

Tauris & Takens '98, Liu et al. '15)

SN Natal Kick

(e.g., Shklovskii '70, Janka '16)

 $V_2^{\text{post}-\text{SN}}$ $V_{2,orb}^{pre-SN}$

Ň

What exactly disrupts the binary? $\gtrsim 80\%$ of binaries are disrupted

Unbinding Matter

(e.g., Blaauw '61)

Ejecta Impact

(e.g., Wheeler et al. '75,

Tauris & Takens '98, Liu et al. '15)

• SN Natal Kick

(e.g., Shklovskii '70, Janka '16)

 $V_2^{\text{post}-SN}$ $V_{2}^{\text{pre}-SN}$

SN natal kick

ν emission and/or ejecta anisotropies

Credits: Ott, C. D., Drasco, S.

(potential) Physics lessons...

... from disrupted binaries

ANTON PANNEKOEK INSTITUTE

• BH kicks • Binary evolution

Do BH receive natal kicks?

Spatial distribution of X-ray binaries

(e.g., Repetto et al. '12,'15,'16, Mandel '16)

Massive (and WR) runaways

(Dray et al. '05)

Disrupted binaries are "failed" GW sources!

(potential) Physics lessons...

...from disrupted binaries

ANTON PANNEKOEK INSTITUTE

BH kicks Binary evolution

Constraints on binary physics

- Orbital evolution \Leftrightarrow pre-SN period
- Mass transfer efficiency \Leftrightarrow pre-SN M_2
- Angular momentum loss \Rightarrow isotropic re-emission, circumbinary disk, etc.

Initial Distributions

Maxwellian $\sigma_{v_{kick}} = 265 \, \mathrm{km} \, \mathrm{s}^{-1}$ + Fallback rescaling

Initial Distributions

Maxwellian $\sigma_{v_{kick}} = 265 \, \mathrm{km} \, \mathrm{s}^{-1}$ + Fallback rescaling

ANTON PANNEKOEK

Velocity distribution: Walkaways

ANTON PANNEKOEK Institute

For each runaway there are \sim 20 walkaways in the galaxy! $_{_{\rm 30/42}}$

Velocity distribution: Walkaways

Can't get rid of them!

10^{0}		Physical Assumptions	parameter	value	⟨v⟩ [km s ^{−1}]	$\mathcal{R}_{\mathrm{MS}}$	R7.5	\mathcal{R}_{15}	\mathcal{D}
		Fiducial population		see Sec. 2	12.9	17.9	16.3	17.2	0.84
		Mass transfer efficiency	β_{RLOF}	0	15.6	9.6	7.6	4.0	0.85
				1	11.7	27.2	31.2	17.4	0.84
1		Angular momentum loss	nomentum loss y _{RLOF}	-3	11.5	20.0	35.7	27.8	0.83
10^{-1}	_	Auguar momentum toss		1	13.1	17.2	15.3	16.8	0.84
10		Common envelope efficiency	α _{CE}	0.1	12.9	20.7	16.2	17.1	0.85
				10	13.6	10.9	15.0	17.2	0.82
		Mass ratio for case A merger Mass ratio for case B merger SN kick velocity	$q_{ m crit, A}$ $q_{ m crit, B}$ $\sigma_{ m kick}$	0.8	12.7	18.2	10.0	18.1	0.84
				0.2	15.0	20.7	212.0	117.0	0.85
0 5				1.0	9.7	39.7	313.8	15.5	0.88
0.5				0.0	10.8	32.3	9.9	15.5	0.82
				1000	14.0	13.6	11.7	10.9	0.89
3				300	13.1	17.2	15.5	16.3	0.85
204		No kick for $M_{NS} \le 1.35$			14.7	16.4	9.4	9.0	0.47
, 0.4	$\sim 10^{-4}$	Fallback fraction	fb	0	14.0	13.1	10.5	8.1	0.94
×		Initial distributions	parameter	value	⟨v⟩ [km s ^{−1}]	$\mathcal{R}_{\mathrm{MS}}$	R _{7.5}	\mathcal{R}_{15}	D
± 0.3		Period distribution slope	π	-1	13.4	16.6	14.4	15.0	0.86
Ξ 0.0				0	11.9	21.6	22.0	23.6	0.83
P.		Initial period upperlimit	$max(P_{ZAMS})$	10 ^{3.5}	14.2	9.2	12.3	16.9	0.80
a		Initial mass function slope Mass ratio slope Mass ratio slope Metallicity	α' κ Ζ	-1.9	13.4	16.2	14.2	14.8	0.78
202				-3	12.1	21.1	21.0	23.3	0.90
2 0.2				-1	13.8	13.7	12.3	13.4	0.84
<u> </u>				1	12.2	24.3	22.1	21.8	0.83
_				0.0002	23.0	3.8	2.8	1.8	0.76
0.1				0.0047	10.7	9.4	17.0	20.7	0.82
0.1		Initial epin distribution		0.05 R15	12.1	18.0	16.3	17.2	0.85
		initial spin distribution		1110	1	10.0	1010	11.2	0.04
0.0									
0.0	0 10 20 30	40	50	60)	7	70		
	71	$[1 cm c^{-1}]$							
	$v_{\rm di}$	s [KIII S							

For each runaway there are \sim 20 walkaways in the galaxy! $_{_{30/42}}$

30 Doradus

O-type runaways

Largest homogeneous sample available to date INSTITUTE

O-type runaways

Largest homogeneous sample available to date INSTITUTE

O-type runaways

32/42

(Massive) runaway mass function

ANTON PANNEKOEK INSTITUTE

(Massive) runaway mass function

ANTON PANNEKOEK INSTITUTE

BH \Leftrightarrow $M_{\rm BH} \ge 2.5 \, M_{\odot}$, Only $\nu \ge 30 \, {\rm km \ s^{-1}}$ and $M_{\rm dis} \ge 7.5 \, M_{\odot}$ 35/42

×ĭ×

(Massive) runaway mass function

ANTON PANNEKOEK INSTITUTE

BH \Leftrightarrow $M_{\rm BH} \ge 2.5 \, M_{\odot}$, Only $\nu \ge 30 \, {\rm km \ s^{-1}}$ and $M_{\rm dis} \ge 7.5 \, M_{\odot}$ _{36/42}

Take home points 2/3

ANTON PANNEKOEK INSTITUTE

$\sim 80\%$ of binaries disrupted by first SN

Massive walk/runaways stars...

(regardless of their final velocity)

- ... "pollute" the field with binary products
- ...carry info on previous binary evolution
- ...can be used to learn about companion explosion
- ...enhance the massive stars feedback

Stellar winds: NS or BH? • Line driving mechanism

Core Collapse in a Binary Massive "widowed" stars

Pulsational Pair Instability

• BH mass function above \sim 30 M_{\odot}

Different behaviors with M_{ZAMS} and/or M_{He} IMF(M) $\propto M^{-2.3}$

cf. Woosley 2017

 $M_{\rm He}$ governs the fate, determines $M_{\rm BH}$

 $M_{
m He}\gtrsim 32\,M_\odot$

(Woosley 2017)

4b. PISN: complete disruption

4a. Pulse with mass ejection

PPISN mass loss history

Take home point 3/3

- Can modify the BH mass function (2nd mass gap)
 - Creates circumbinary gas as late as possible
- How does the orbital parameter change because of the PPI?

Conclusions

- Massive stars are important for their environment
 - Ionization (e.g., HII regions)
 - Star formation
 - Chemical evolution & Nucleosynthesis
- Their evolution is determined by:
 - Initial mass
 - Rotation
 - Presence of companion star(s)
- They produce BH and NS that can later become GW sources

Uncertainties are related to radiative and/or hydrodynamical processes on evolutionary timescales.

Conclusions

- Massive stars are important for their environment
 - Ionization (e.g., HII regions)
 - Star formation
 - Chemical evolution & Nucleosynthesis
- Their evolution is determined by:
 - Initial mass
 - Rotation
 - Presence of companion star(s)
- They produce BH and NS that can later become GW sources

Uncertainties are related to radiative and/or hydrodynamical processes on evolutionary timescales.

ANTON PANNEKOEK INSTITUTE

Backup slides

Where do they die?

ANTON PANNEKOEK INSTITUTE

No potential well, $\sigma_{\rm kick} = 265 \,\rm km \, s^{-1}$

Rotation @ t=0 from O. Ramirez-Agudelo et al. '15

Spin Down: Winds

ANTON PANNEKOEK INSTITUTE

Properties of the RWs in 30 Dor

_fR

Credits: H. Sana et al. (in prep.)

Soon proper motions!

(Lennon et al. in prep.)

SN natal kicks

INSTITUTE

Orbit from Tauris & Takens '98

Fig. 2. Geometry of the orbital plane of a disrupted system (e > 1, a < 0) after an asymmetric supernova explosion. The reference frame is fixed on the companion star (C).

Fallback from Fryer et al. 12

(Rapid SN mechanism)

1	$M_{\rm fb} = 0.2 M_{\odot}$	$M_{ m CO} < 2.5 M_{\odot}$
	$M_{\rm fb} = 0.286 M_{\rm CO} - 0.514 M_{\odot}$	$2.5 M_{\odot} \leq M_{\rm CO} < 6.0 M_{\odot}$
ł	$f_{\rm fb} = 1.0$	$6.0 M_{\odot} \leq M_{\rm CO} < 7.0 M_{\odot}$
	$f_{\rm fb} = a_1 M_{\rm CO} + b_1$	$7.0 M_{\odot} \leq M_{\rm CO} < 11.0 M_{\odot}$
	$f_{\rm fb} = 1.0$	$M_{\rm CO} \geqslant 11.0 M_{\odot}$

Ejecta impact from Liu et al. '15

Computing Advanced Burning Stages

- Initially small effect \Rightarrow $N_{\rm zones} \gtrsim$ 20 000
- Complex nuclear burning \Rightarrow $N_{\rm iso}$ \gtrsim 200

$$\textit{M}_{Ch}^{\rm eff} \sim \left(5.83\textit{M}_{\odot}\right)\textit{Y}_{e}^{2} \left[1 + \left(\frac{\textit{s}_{e}}{\pi\textit{Y}_{e}}\right)^{2}\right]$$

<code>approx21.net</code> \Rightarrow^{56} Fe + 2 $e^ \rightarrow^{56}$ Cr + 2 ν_e

$$Y_e(r=0) \equiv Y_e(^{56}Cr) = 0.428$$

Largest array size in MESA

 $|\mathcal{L} \sim (N_{\rm iso} + N_{\rm zones})^2 \sim ((N_{\rm iso} + 5) \cdot N_{\rm zones}) \cdot (3N_{\rm iso} + 9)$

 \mathcal{L} is a FORTRAN integer $\Rightarrow \max\{\text{memory}\} = 17 \, \text{Gb}$

ANTON PANNED

INSTITUTE

Cluster ejection

ANTON PANNE

INSTITUTE

N-body interactions least massive thrown out ...binaries matter

- (Binding) Energy reservoir
- Cross section ∝ a² ≫ R²_{*}

Poveda et al., 1967

Initial mass:

$$M_{\rm ZAMS} = \{15, 20, 25, 30, 35\} M_{\odot};$$

• Efficiency:

$$\eta = \{1, \frac{1}{3}, \frac{1}{10}\};$$

• Combinations of wind mass loss rates for "hot" $(T_{\rm eff} \ge 15 \ [\rm kK])$, "cool" $(T_{\rm eff} < 15 \ [\rm kK])$ and WR:

Kudritzki *et al.* '89; Vink *et al.* '00, '01; Van Loon *et al.* '05; Nieuwenhuijzen *et al.* '90; De Jager *et al.* '88; Nugis & Lamers '00; Hamann *et al.* '98.

... of disrupting binaries

ANTON PANNEKOEK INSTITUTE

- Feedback
- Field contamination
- Massive Star Formation
- LBV

... of disrupting binaries

- Feedback
- Field contamination
- Massive Star Formation
- LBV

- Enhancement of massive stars feedback
 - Larger volume
 - Spatial spread of CCSN

(e.g., Conroy & Kratter '12)

- \sim 20% increase in $f_{\rm esc}$

(e.g., Kimm & Cen '14)

... of disrupting binaries

- Feedback
- Field contamination
- Massive Star Formation
- LBV

- Contamination of field
 with binary products
 - Are "single" stars really single?
 - Have they always been?

... of disrupting binaries

- Feedback
- Field contamination
- Massive Star Formation

- Massive star formation
 - are isolated massive stars formed "in situ"?

(e.g., Gavramadze et al. '12)

• LBV

... of disrupting binaries

- LBV phenomenon
 - Do LBV require binarity?

- Feedback
- Field contamination
- Massive Star Formation

O-type

LBV

WR

• LBV

... of disrupting binaries

ANTON PANNEKOEK INSTITUTE

LBV phenomenon

- Feedback
- Field contamination
- Massive Star
 Formation
- LBV

Mass-rotation correlation

ANTON P

ANNE

INSTITUTE

Mass-rotation correlation

ANTON PANNER

INSTITUTE

Mass-rotation correlation

ANTON P

ANNE

INSTITUTE

for $M \ge 7.5 M_{\odot}$: $\langle D \rangle = 128 \, \text{pc}$

for $M \ge 7.5 M_{\odot}$: $\langle D \rangle = 128 \, \text{pc}$ $\langle D_{\text{run}} \rangle = 525 \, \text{pc}$

for $M \ge 7.5 M_{\odot}$: $\langle D \rangle = 128 \, \mathrm{pc}$ $\langle D_{\mathrm{run}} \rangle = 525 \, \mathrm{pc}$ $\langle D_{\mathrm{walk}} \rangle = 103 \, \mathrm{pc}$

🖗 Gaia will give proper motions & distances

ANTON PANNEKOEK

- P Cygni line profiles
- Optical and near UV lines (e.g. $H\alpha$)
- Radio and IR continuum excess
- IR spectrum of molecules (e.g. CO)
- Maser lines (for low density winds)

Assumptions commonly needed

- Velocity structure: $v(r) \simeq \left(1 rac{r}{R_*}
 ight)^{eta}$ with $eta \simeq 1$
- Chemical composition and ionization fraction
- Spherical symmetry: $\dot{M} = 4\pi r^2 \rho v(r)$
- Steadiness and (often) homogeneity

 \dot{M} derived from fit of (a few) spectral lines. No theoretical guaranties coefficients are constant.

Back