

### VFTS meeting - 17.05.2016

Massive Runaway Stars in 30 Dor: probes for binary and explosion physics? Mathieu Renzo PhD @ API

Collaborators: S. E. de Mink, E. Zapartas, Y. L. L. Götberg, C. Neijssel, R. Izzard, H. Sana







#### **Definition of Runaway**

#### **Ejection Mechanisms**

- SN Explosion in a Binary
- Dynamical Ejection from Cluster

#### **Observed Sample**

#### **Runaways From Binary Population Synthesis**

Preliminary Results

#### Conclusions





- Blaauw (1961): Runaway star  $\stackrel{\text{def}}{\Leftrightarrow} v_r \gtrsim 30 \text{ [km s}^{-1]}$
- Later: added O type stars out of galactic plane, change  $\min(v_r)$ ,  $v_r \gtrsim v_{\rm esc}$ , etc.

No clear definition in the literature, but:





Wavelength





ANTON PANNEKOEK INSTITUTE

#### **Definition of Runaway**

#### **Ejection Mechanisms**

- SN Explosion in a Binary
- Dynamical Ejection from Cluster

#### **Observed Sample**

## Runaways From Binary Population Synthesis Preliminary Results

Conclusions



#### Two ejection mechanisms



### SN in a Binary

#### Blaauw, 1961



 $v_r \simeq v_2^{\rm orb}$ 



#### Two ejection mechanisms



## SN in a Binary

#### Blaauw, 1961



$$v_r \simeq v_2^{\rm orb}$$



Explosion asymmetries  $\Rightarrow$  extra kick (?)



#### Two ejection mechanisms

### SN in a Binary

Blaauw, 1961





...but binaries are still important!

**Dynamical Ejection** 

Poveda et al., 1967

- (Binding) Energy reservoir
- Cross section ∝ a<sup>2</sup> ≫ R<sup>2</sup><sub>\*</sub>
- $\sim$  100% O stars are in binaries

Explosion asymmetries  $\Rightarrow$  extra kick (?)





ANTON PANNEKOEK INSTITUTE

#### **Definition of Runaway**

# Ejection Mechanisms SN Explosion in a Binary Dynamical Ejection from Cluster

#### **Observed Sample**

## Runaways From Binary Population Synthesis Preliminary Results

#### Conclusions



Dec (J2000)

#### O type runaways in 30 Doradus



#### VFTS Flames:

non-RW O stars;

ANTON PANN

INSTITUTE

- Single RWs;
- Binary RW;
- OB associations.



#### Properties of the RWs in 30 Dor 1/2

ANTON PANNEKOEK INSTITUTE



Credits: H. Sana et al. (in prep.)

Soon HST will provide proper motion of these stars!

#### Properties of the RWs in 30 Dor 2/2

ANTON PANNEKOEK Institute

Observed Runaways form 3 groups on the  $(v_r, v_{eq} \sin i)$  plane



#### Credits: H. Sana et al. (in prep.)





ANTON PANNEKOEK INSTITUTE

#### **Definition of Runaway**

### Ejection Mechanisms

- SN Explosion in a Binary
- Dynamical Ejection from Cluster

#### **Observed Sample**

## Runaways From Binary Population Synthesis Preliminary Results

Conclusions



binary\_c: R. Izzard et al. 2004, 2006, 2009



#### Initial distributions





100 Primaries  $\times$  100 Secondaries  $\times$  200 Periods  $\times$  10 birth kicks per SN (Maxwellian  $\sigma_{v_{kick}} = 265 [\text{km s}^{-1}]$ )

Need to distinguish NS/BH kicks













#### **Preliminary Results**

ANTON PANNEKOEK INSTITUTE



## Why Fast Rotators? Accretion Spin-up

Easy to spin up the secondary

Credits: ESO, L. Calçada, M. Kornmesser, S.E. de Mink

#### Preliminary Results: Traveled Distance







## Preliminary: Selecting the right RWs



• Constant SFR for 5 Myr • still visible in VFTS FOV? • still a RW?





ANTON PANNEKOEK INSTITUTE

#### **Definition of Runaway**

#### **Ejection Mechanisms**

- SN Explosion in a Binary
- Dynamical Ejection from Cluster

#### **Observed Sample**

## Runaways From Binary Population Synthesis Preliminary Results

#### Conclusions





- Characterization of RWs might help disentangle ejection mechanism;
- Population of RWs might be helpful to constrain binary physics and explosion physics;
- Binaries produces both fast spinning slow RWs

 $(v_{eq} \gtrsim 220 \text{ [km s}^{-1]} \Rightarrow \text{accretion spin up?})$  and slow rotators fast RWs ( $v_r \gtrsim 100 \text{ [km s}^{-1]} \Rightarrow \text{tidal spin down?})$ , but the latter are rare.

#### Next steps:

- Improve treatment of SN kick (and possibly *v<sub>r</sub>*);
- Fold-in realistic SFR to compare with observations;
- Explore dependence on free parameters in binary evolution (e.g.  $\alpha_{\rm CE}$ , *J*-losses).

#### Thank you for your attention!





ANTON PANNEKOEK INSTITUTE

#### **Backup slides**



#### SN in a Binary (BSS)

Binary & Single star evolution:

- SN kick (and BH kicks!)
- Core-Envelope coupling
- SN timing

#### **Dynamical Ejection (DES)**

ANTON PA

INSTITUTE

Cluster properties:

- binary fraction;
- stellar density;
- dark matter distribution; (see e.g Ho & Kroupa 2016)

• Radiative, mechanical, and chemical feedback of Massive Stars *up to* Kpc away from their birth location.



Credits: H. Sana et al. (in prep.)







Preliminary Results: Relative Populations

ANTON PANNEKOEK INSTITUTE

(with Probability weighting)

| • | Rapidly Spinning slow RW<br>Slowly Spinning fast RWs | = | 1716 | (2390);  |
|---|------------------------------------------------------|---|------|----------|
| • | Rapidly Spinning slow RW<br>Avoidance Region         | = | 9266 | (13054); |
| • | Rapidly Spinning slow RW<br>Slowly Spinning slow RWs | = | 5    | (13);    |
| • | Rapidly Spinning slow RW<br>"Walkaway" stars         | = | 0.07 | (0.06);  |



**Preliminary Results** 







#### **Preliminary Results**







**Preliminary Results** 







**Preliminary Results** 







\_ffA





#### **Preliminary Results**







**Preliminary Results** 







**Preliminary Results** 







**Preliminary Results** 



