

Probes for stellar physics and dynamics

Mathieu Renzo PhD in Amsterdam

Collaborators:E. Zapartas, S. E. de Mink, Y. Götberg, S. Justham, R. J. Farmer, R. G. Izzard, S. Toonen, D. J. Lennon, H. Sana, E. Laplace

NASA, JPL-Caltech, Spitzer Space Telescope

ANTON PANNEKOEK INSTITUTE

How to measure stellar velocities?

Runaway definition

Ejection Mechanisms

- Dynamical interactions
 - Binary disruption
- SN kicks and binary evolution

Runaway stars from Gaia DR2

• Dynamical ejections (?)

• What can we learn from the Galactic population

Conclusions

Observations of stellar velocities

ANTON PANNEKOEK INSTITUTE

e Bow shocks

Doppler shifts

 \Rightarrow

Wavelength

Observations of stellar velocities

ANTON PANNEKOEK INSTITUTE

🖗 Gaia will give proper motions & distances

ANTON PANNEKOEK INSTITUTE

How to measure stellar velocities?

Runaway definition

Ejection Mechanisms

- Dynamical interactions
 - Binary disruption
- SN kicks and binary evolution

Runaway stars from Gaia DR2

• Dynamical ejections (?)

• What can we learn from the Galactic population

Conclusions

What is a runaway?

from Tetzlaff et al. 11,

see also Zwicky 57, Blaauw 61, 93, Gies & Bolton 86, Leonard 91, Renzo et al. 18, submitted, arXiv:1804.09164

How to measure stellar velocities?

Runaway definition

Ejection Mechanisms

Dynamical interactions

- Binary disruption
- SN kicks and binary evolution

Runaway stars from Gaia DR2

• Dynamical ejections (?)

• What can we learn from the Galactic population

Conclusions

Cluster ejection

ANTON PANNI

INSTITUTE

N-body interactions (typically) least massive thrown out. Binaries matter...

- (Binding) Energy reservoir
- Cross section ∝ a² ≫ R²_{*}

Poveda et al., 1967

..but don't necessarily leave imprints!

Example of dynamical interaction

Credits: C. Rodriguez

××××

Timing of ejection

ANTON PANNEKOEK INSTITUTE

from Oh & Kroupa 16, see also, e.g., Poveda et al. 64, Fujii & Portegies-Zwart 11, Banerjee et al. 12

How to measure stellar velocities? Runaway definition

Ejection Mechanisms

Dynamical interactions

Binary disruption

• SN kicks and binary evolution

Runaway stars from Gaia DR2

• Dynamical ejections (?)

• What can we learn from the Galactic population

Conclusions

Binary disruption

Credits: ESO, L. Calçada, M. Kornmesser, S.E. de Mink

Spin up, pollution, and rejuvenation

ANTON PANNEKOEK INSTITUTE

The binary disruption shoots out the accretor

Spin up: Packet '81, Cantiello *et al.* '07, de Mink *et al.* '13 Pollution: Blaauw '93 Rejuvenation: Hellings '83, Schneider *et al.* '15

ě

What exactly disrupts the binary?

86^{+11}_{-9} % of binaries are disrupted

ANTON PANNEKOEK INSTITUTE

Renzo et al. 18, arXiv:1804.09164

- $v_{\rm dis} \simeq v_{2.{
 m orb}}^{{
 m pre}-{
 m SN}}$
- Unbinding Matter

(e.g., Blaauw '61)

• Ejecta Impact

(e.g., Wheeler et al. '75,

Tauris & Takens '98, Liu et al. '15)

SN Natal Kick

(e.g., Shklovskii '70, Janka '16)

What exactly disrupts the binary?

86^{+11}_{-9} % of binaries are disrupted

ANTON PANNEKOEK INSTITUTE

Renzo et al. 18, arXiv:1804.09164

- $v_{\rm dis} \simeq v_{2.{
 m orb}}^{{
 m pre}-{
 m SN}}$
- Unbinding Matter

(e.g., Blaauw '61)

• Ejecta Impact

(e.g., Wheeler et al. '75,

Tauris & Takens '98, Liu et al. '15)

• SN Natal Kick

(e.g., Shklovskii '70, Janka '16)

Binary Supernova

- Ejects initially less massive star
- Requires SN kick
- Final $v \simeq v_2^{\text{orb}}$
- Leaves binary signature (fast rotation, He/N enhancement, lower apparent age)

Dynamical Ejection

- N-body interactions
- (Typically) least Massive
 thrown out

...Binaries are still important!

- (Binding) Energy reservoir
- Cross section $\propto a^2 \gg R_*^2$

but might not leave signature

Cluster Evolution

ANTON PANNE

INSTITUTE

- Which stars remain in the cluster?
- Which stare are ejected?
- How do clusters form and evolve?
- Target stars avoiding crowding issues

How to measure stellar velocities? Runaway definition Ejection Mechanisms • Dynamical interactions • Binary disruption

• SN kicks and binary evolution

Runaway stars from Gaia DR2

• Dynamical ejections (?)

• What can we learn from the Galactic population

Conclusions

SN natal kick

Observationally: $v_{\text{pulsar}} \gg v_{\text{OB-stars}}$

Physically: v emission and/or ejecta anisotropies

Credits: Ott, C. D., Drasco, S.

(potential) Physics lessons...

... from disrupted binaries

ANTON PANNEKOEK INSTITUTE

BH kicks Binary evolution

Do BH receive natal kicks?

Spatial distribution of X-ray binaries

(e.g., Repetto et al. '12,'15,'16, Mandel '16)

Massive (and WR) runaways

(Dray et al. '05)

Disrupted binaries are "failed" GW sources!

(potential) Physics lessons...

...from disrupted binaries

ANTON PANNEKOEK INSTITUTE

BH kicks Binary evolution

Constraints on binary physics

- Orbital evolution \Leftrightarrow pre-SN period
- Mass transfer efficiency \Leftrightarrow pre-SN M_2
- Angular momentum loss ⇔ isotropic re-emission, circumbinary disk, etc.

How to measure stellar velocities? Runaway definition Ejection Mechanisms

- Dynamical interactions
 - Binary disruption
- SN kicks and binary evolution

Runaway stars from Gaia DR2

• Dynamical ejections (?)

• What can we learn from the Galactic population

Conclusions

Gaia DR2 reveals extreme runaways

ANTON PANNEKOEK INSTITUTE

VFTS682: Dynamically ejected runaway?

Very Preliminary!

Spectral analysis:

ANTON PANNE

$$\begin{split} M_{\rm ZAMS} &= 150.0^{+28.7}_{-17.4}\,M_{\odot} \\ M_{\rm now} &= 137.8^{+27.5}_{-15.9}\,M_{\odot} \end{split}$$

Evans et al., '11

INSTITUTE

Schneider et al., '18

$$\begin{split} \text{Gaia DR2 astrometry:} \\ \delta \textit{v}_{\parallel} \simeq 32 \pm 21 \text{ km s}^{-1} \\ \tau_{kin} = 0.9 \pm 0.6 \text{ Myr} \end{split}$$

Renzo et al., in prep.

VFTS682: Concordant Picture?

Very Preliminary!

Large error bars compatible with no motion but best values fit with expectations for dynamical ejection

ANTON P

INSTITUTE

Implications of ejection of $\gtrsim 100 \, M_{\odot}$ stars from M_{\odot}

How massive are the stars that caused the scattering?

R136a1:
$$M_{\text{now}} = 315^{+60}_{-50} M_{\odot}$$

R136a2: $M_{\text{now}} = 195^{+35}_{-30} M_{\odot}$
R136a3: $M_{\text{now}} = 180^{+30}_{-30} M_{\odot}$

Crowther et al. 16

R136 hosts the most massive stars known to date: did they form through dynamical mergers?

Spectroscopic evidence: de Koter et al. 97, Crowther et al. 10, 16,

N-body simulations: Fujii & Portegies-Zwart 11, Banerjee et al. 12

§ Implications of ejection of \gtrsim 100 M_{\odot} stars ff

How did the cluster form?

- Monolithic collapse?
- Merger of substructures?
- Influence on N-body dynamics?

cf. Oh & Kroupa 16

Sabbi et al. 12

ANTON PANNE

INSTITUTE

 $\tau_{R136} \lesssim 2\,\text{Myr} < \text{min}\{\text{stellar lifetime}\}:$ No SNe yet, dynamical ejections very early on!

de Koter et al. 97, Sabbi et al. 12, Crowther et al. 10, 16, Cignoni et al. 15, in prep.

Implications of ejection of \gtrsim 100 M_{\odot} stars from M_{\odot}

ANTON PANNEKOEK INSTITUTE

Can massive stars form in isolation?

Lennon et al. 18, arXiv:1805.08227

Isolated formation not required for VFTS16 and 72 Less clear for 682, but possibly not needed.

Bestenlehner et al. 11, Gvaramadze et al. 12, Banerjee et al. 12, Lennon et al. 18, Renzo et al., in prep.

How to measure stellar velocities? Runaway definition Ejection Mechanisms

- Dynamical interactions
 - Binary disruption
- SN kicks and binary evolution

Runaway stars from Gaia DR2

• Dynamical ejections (?)

• What can we learn from the Galactic population

Conclusions

Velocity distribution: Runaways

ANTON PANNEKOEK INSTITUTE

Velocity distribution: Walkaways

ANTON PANNEKOEK

INSTITUTE

Take home points:

- Walkaways outnumber the runaways by \sim 10×
- Binaries barely produce $v_{
 m dis}\gtrsim 60\,{
 m km~s^{-1}}$
- All runaways from binaries are post-interaction objects Renzo *et al.*, submitted, arXiv:1804.09164

Velocity distribution: Walkaways

- Binaries barely produce $v_{\rm dis}\gtrsim 60\,{\rm km~s^{-1}}$
- All runaways from binaries are post-interaction objects Renzo *et al.*, submitted, arXiv:1804.09164

Velocity distribution: Walkaways

- Binaries barely produce $v_{\rm dis}\gtrsim 60\,{\rm km~s^{-1}}$
- All runaways from binaries are post-interaction objects Renzo *et al.*, submitted, arXiv:1804.09164

A way to constrain BH kicks

Massive runaways mass function ($\nu \ge 30 \,\mathrm{km \ s^{-1}}$, $M \ge 7.5 \,M_{\odot}$)

A way to constrain BH kicks

Massive runaways mass function ($v \ge 30 \text{ km s}^{-1}$, $M \ge 7.5 M_{\odot}$)

1.0

0.0

1.0

0.0

1.0

0.0 L

 $Probability \times 10^5$

A way to constrain BH kicks

40

 $M_{\rm dis} [M_{\odot}]$

50

60

10

20

30

70

A way to constrain BH kicks

Massive runaways mass function ($v \ge 30 \text{ km s}^{-1}$, $M \ge 7.5 M_{\odot}$)

A way to constrain BH kicks

How to measure stellar velocities? Runaway definition Ejection Mechanisms • Dynamical interactions

- Binary disruption
- SN kicks and binary evolution

Runaway stars from Gaia DR2

• Dynamical ejections (?)

• What can we learn from the Galactic population

Conclusions

- **Dynamical ejections**
- Produce on average faster runaways
- Gaia DR2 confirms ejection of \gtrsim 100 M_{\odot} stars
- VFTS682: isolated star formation cannot be ruled out, but seems consistent with ejection from R136
 ⇒ Massive "bully binary" as GW progenitor?
- R136 extremely active in ejecting stars in its first 2 Myr ⇒ implications for formation?

Binary SNe

- Disrupts the vast majority of binaries
 ⇒ X-ray binaries and GW sources are exceptions
- Over-produces "Walkaways"
- · Binarity leaves imprint on the ejected star
- Can be used to constrain BH kicks (statistically)

ANTON PANNEKOEK INSTITUTE

Backup slides

Izzard et al. '04, '06, '09; de Mink et al. '13

×Ň×

Runaway fraction for O-type too low!

Physical Assumptions	Parameter	value	D [%]	f_{15}^{RW} [%]	f_{15}^{WA} [%]
Fiducial population		see Sec. 2	86	0.5	10.1
Mass transfer efficiency		0	86	0.3	1.5
	β_{RLOF}	0.5	87	1.2	8.6
		1	87	0.7	14.7
Angular momentum loss	YPLOF	$\gamma_{ m disk}$	85	0.2	7.3
	/ RLOF	1	86	0.6	9.9
Common anvalone officianay	(/cr	0.1	86	0.5	10.1
common envelope encency	ace	10	84	0.5	10.0
Mass ratio for case A merger	d in t	0.80	86	0.5	10.2
Mass faile for ease A merger	<i>q</i> crit, A	0.25	86	0.6	9.4
Mass ratio for case B merger		1.0	89	0.0	5.0
Mass ratio for case B merger	<i>Y</i> crit, B	0.0	85	0.6	$\begin{array}{c} J_{13}^{13} \\ [\%] \\ \hline 10.1 \\ \hline 10.1 \\ \hline 1.5 \\ 8.6 \\ 14.7 \\ \hline 7.3 \\ 9.9 \\ \hline 10.1 \\ 10.0 \\ \hline 10.2 \\ 9.4 \\ \hline 5.0 \\ 10.1 \\ \hline 10.0 \\ \hline 10.3 \\ 11.2 \\ \hline 8.7 \\ \hline 4.9 \\ \hline 10.3 \\ 10.0 \\ \hline 12.1 \\ \hline 7.7 \\ 10.3 \\ 10.0 \\ \hline \end{array}$
		0	16	-	0.0
Natal kick velocity	$\sigma_{ m kick}$	300	87	0.6	10.3
		1000	91	1.2	11.2
Natal kick amplitude	$(\sigma_{\rm kick}, f_b)$	(100, 0)	84	0.3	8.7
Double maxwellian with $\sigma_{\rm kick}$	$= 30 \mathrm{km} \mathrm{s}^{-1}$	for $M_{\rm NS} \le 1.35$	65	0.5	4.9
Pestricted kick directions		$\alpha < 10 \deg$	87	0.6	10.3
Resulted Kick difections		$\frac{\pi}{2} - \alpha < 45 \deg$	86	0.5	10.0
Fallback fraction	f_b	0	97	1.5	12.1
	_	0.0002	77	2.6	7.7
Metallicity	Z	0.0047	84	1.2	10.3
		0.03	88	0.5	10.0

ANTON PANNEKOEK INSTITUTE

Robust outcome (but less bad at low Z)

$$f_{15}^{\rm RW} \stackrel{\rm def}{=} \frac{\# \text{ runaways}}{\# \text{ stars}}$$

Observed:

$$f_{15}^{\mathrm{RW}}\simeq 10-20\%$$

$\sim\!\frac{2}{3}$ of runaways from binaries

×××

Runaway fraction for O-type too low!

Physical Assumptions	Parameter	value	\mathcal{D}	f_{15}^{RW}	f_{15}^{WA}
Fiducial population		saa Saa 🤉	[%]	[%]	[%]
Fiducial population		see sec. 2	00	0.5	10.1
Mass transfer efficiency	0	0	86	0.3	1.5
	PRLOF	0.5	87	1.2	8.6
		1	87	0.7	14.7
Angular momentum loss	β_{RLOF} γ_{RLOF} α_{CE} $q_{\text{crit, A}}$ $q_{\text{crit, B}}$ σ_{kick} $(\sigma_{\text{kick}}, f_b)$ $= 30 \text{km s}^{-1}$	$\gamma_{ m disk}$	85	0.2	7.3
Angular momentum loss		1	86	0.6	9.9
Common envelope officiency	0/cF	0.1 80	86	0.5	10.1
common envelope enterency	γ_{RLOF} γ_{RLOF} α_{CE} $q_{\text{crit, A}}$ $q_{\text{crit, B}}$ σ_{kick} $(\sigma_{\text{kick}}, f_b)$	10	84	0.5	10.0
Mass ratio for case A merger	<i>a</i>	0.80	86	0.5	10.2
Mass ratio for case A merger	$\alpha_{\rm CE}$ $q_{\rm crit, A}$ $q_{\rm crit, B}$ $\sigma_{\rm kick}$	0.25	86	0.6	9.4
Mass ratio for case B merger		1.0	89	0.0	5.0
Mass fatio for case D merger	<i>q</i> crit, B	0.0	85	0.6	10.1
		0	16	-	0.0
Natal kick velocity	$\sigma_{ m kick}$	300	87	0.6	10.3
		1000	91	1.2	11.2
Natal kick amplitude	$(\sigma_{\rm kick}, f_b)$	(100,0)	84	0.3	8.7
Double maxwellian with $\sigma_{\rm kick}$	$= 30 \text{km} \text{s}^{-1}$	for $M_{\rm NS} \le 1.35$	65	0.5	4.9
Restricted kick directions		$\alpha < 10 \deg$	87	0.6	10.3
resultion field anotablis		$\frac{\pi}{2} - \alpha < 45 \deg$	86	0.5	10.0
Fallback fraction	f_b	0	97	1.5	12.1
		0.0002	77	2.6	7.7
Metallicity	Z	0.0047	84	1.2	10.3
		0.03	88	0.5	10.0

ANTON PANNEKOEK INSTITUTE

Robust outcome (but less bad at low *Z*)

$$r_{\rm RW} \stackrel{\rm def}{=} \frac{\# \text{ runaways}}{\# \text{ stars}}$$

Observed:

$$f_{15}^{\mathrm{RW}}\simeq 10-20\%$$

$\sim\!\frac{2}{3}$ of runaways from binaries

×Ň

Runaway fraction for O-type too low!

Physical Assumptions	Parameter	value	D [%]	f_{15}^{RW} [%]	f_{15}^{WA} [%]
Fiducial population		see Sec. 2	86	0.5	10.1
Mass transfer efficiency		0	86	0.3	1.5
	β_{RLOF}	0.5	87	1.2	$\begin{array}{c} f_{15}^{Wa} \\ [\%] \\ [\%] \\ 10.1 \\ 1.5 \\ 8.6 \\ 14.7 \\ 7.3 \\ 9.9 \\ 10.1 \\ 10.0 \\ 10.2 \\ 9.4 \\ 5.0 \\ 10.1 \\ 0.0 \\ 10.3 \\ 11.2 \\ 8.7 \\ 4.9 \end{array}$
		1	87	0.7	14.7
Angular momentum loss	VDLOF	$\gamma_{ m disk}$	85	0.2	7.3
	/ KLOF	1	86	0.6	9.9
Common envelope efficiency	0 CE	0.1	86	0.5	10.1
common envelope encenery	ace.	10	84	0.5	10.0
Mass ratio for case A merger	durity h	0.80	86	0.5	10.2
Mass faile for case A merger	$q_{ m crit, A}$	0.25	86	0.6	9.4
Mass ratio for case B merger	<i>d</i> + <i>p</i>	1.0	89	0.0	5.0
inuss futio for cuse D merger	Чспі, в	0.0	85	0.6	[%] 10.1 1.5 8.6 14.7 7.3 9.9 10.1 10.0 10.2 9.4 5.0 10.1 0.0 10.3 11.2 8.7 4.9 10.3 10.3 10.0
		0	16	-	0.0
Natal kick velocity	$\sigma_{ m kick}$	300	87	0.6	10.3
		1000	91	1.2	11.2
Natal kick amplitude	$(\sigma_{\rm kick}, f_b)$	(100, 0)	84	0.3	8.7
Double maxwellian with $\sigma_{\rm kick}$	$= 30 \mathrm{km}\mathrm{s}^{-1}$	for $M_{\rm NS} \le 1.35$	65	0.5	4.9
Pastricted kick directions		$\alpha < 10 \deg$	87	0.6	10.3
Resulting Kick directolis		$\frac{\pi}{2} - \alpha < 45 \deg$	86	0.5	10.0
Fallback fraction	f_b	0	97	1.5	12.1
	-	0.0002	77	2.6	7.7
Metallicity	Z	0.0047	84	1.2	10.3
		0.03	88	0.5	10.0

Robust outcome (but less bad at low Z)

ANTON PANNER

INSTITUTE

$$f_{15}^{\rm RW} \stackrel{\rm def}{=} \frac{\# \text{ runaways}}{\# \text{ stars}}$$

Observed:

$$f_{15}^{\mathrm{RW}}\simeq 10-20\%$$

$\sim\!\frac{2}{3}$ of runaways from binaries

×Ň

Runaway fraction for O-type too low!

Physical Assumptions	Parameter	value	\mathcal{D}	f_{15}^{RW}	f_{15}^{WA}
T hý steat T issenilp tions	1		[%]	[%]	[%]
Fiducial population		see Sec. 2	86	0.5	10.1
		0	86	0.3	1.5
Mass transfer efficiency	$\beta_{ m RLOF}$	0.5	87	1.2	8.6
		1	87	0.7	14.7
Angular momentum loss	VPLOF	$\gamma_{ m disk}$	85	0.2	7.3
Angula momentum loss	YRLOF	1	86	0.6	9.9
Common envelope efficiency	(Vor	0.1	86	0.5	10.1
common envelope enterency	UCE	10	84	0.5	10.0
Mass ratio for case A merger	<i>a</i>	0.80	86	0.5	10.2
Mass ratio for ease A merger	Gent, A	0.25	86	0.6	9.4
Mass ratio for case B merger		1.0	89	0.0	5.0
Mass faile for case D merger	Gent, B	0.0	85	0.6	10.1
		0	16	-	0.0
Natal kick velocity	$\sigma_{ m kick}$	300	87	0.6	10.3
		1000	91	1.2	11.2
Natal kick amplitude	$(\sigma_{\rm kick}, f_b)$	(100, 0)	84	0.3	8.7
Double maxwellian with $\sigma_{\rm kick}$	$= 30 \mathrm{km} \mathrm{s}^{-1}$	for $M_{\rm NS} \le 1.35$	65	0.5	4.9
Restricted kick directions		$\alpha < 10 \deg$	87	0.6	10.3
Resulting Rick directions		$\frac{\pi}{2} - \alpha < 45 \deg$	86	0.5	10.0
Fallback fraction	f_b	0	97	1.5	12.1
	_	0.0002	77	2.6	7.7
Metallicity	Z	0.0047	84	1.2	10.3
		0.03	88	0.5	10.0

Robust outcome (but less bad at low Z)

ANTON PANNER

INSTITUTE

$$r_{15}^{\rm RW} \stackrel{\rm def}{=} \frac{\# \text{ runaways}}{\# \text{ stars}}$$

Observed:

$$f_{15}^{
m RW}\simeq 10-20\%$$

$\sim\!\frac{2}{3}$ of runaways from binaries

×Ň

Runaway fraction for O-type too low!

Physical Assumptions	Parameter	value	\mathcal{D}	f_{15}^{RW}	f_{15}^{WA}
Thy of the the second participations	1		[%]	[%]	[%]
Fiducial population		see Sec. 2	86	0.5	10.1
		0	86	0.3	1.5
Mass transfer efficiency	$\beta_{ m RLOF}$	0.5	87	1.2	8.6
		1	87	0.7	14.7
Angular momentum loss	VPLOF	$\gamma_{ m disk}$	85	0.2	7.3
Angula momentum loss	YRLOF	1	86	0.6	9.9
Common envelope efficiency	(Vor	0.1	86	0.5	10.1
common envelope enterency	UCE	10	84	0.5	10.0
Mass ratio for case A merger	<i>a</i>	0.80	86	0.5	10.2
Mass ratio for ease A merger	Gent, A	0.25	86	0.6	9.4
Mass ratio for case B merger		1.0	89	0.0	5.0
Mass faile for case D merger	Gent, B	0.0	85	0.6	10.1
		0	16	-	0.0
Natal kick velocity	$\sigma_{ m kick}$	300	87	0.6	10.3
		1000	91	1.2	11.2
Natal kick amplitude	$(\sigma_{\rm kick}, f_b)$	(100, 0)	84	0.3	8.7
Double maxwellian with $\sigma_{\rm kick}$	$= 30 \mathrm{km} \mathrm{s}^{-1}$	for $M_{\rm NS} \le 1.35$	65	0.5	4.9
Restricted kick directions		$\alpha < 10 \deg$	87	0.6	10.3
Resulting Rick directions		$\frac{\pi}{2} - \alpha < 45 \deg$	86	0.5	10.0
Fallback fraction	f_b	0	97	1.5	12.1
	_	0.0002	77	2.6	7.7
Metallicity	Z	0.0047	84	1.2	10.3
		0.03	88	0.5	10.0

Robust outcome (but less bad at low Z)

ANTON PANNER

INSTITUTE

$$r_{15}^{\rm RW} \stackrel{\rm def}{=} \frac{\# \text{ runaways}}{\# \text{ stars}}$$

Observed:

$$f_{15}^{
m RW}\simeq 10-20\%$$

$\sim\!\frac{2}{3}$ of runaways from binaries

Star forming region velocity dispersion

Ň

INSTITUTE