

#### Brown Bag – Pisa, 2016



#### Mathieu Renzo PhD in Amsterdam

Massive stars and binaries: why & how?

NASA, JPL-Caltech, Spitzer Space Telescope

# Why are Massive Stars Important?

Nucleosynthesis & Chemical Evolution

Star Formation K

Ň

Ionizing Radiation 🗧

Supernovae (if  $M_{ZAMS} \gtrsim 8 M_{\odot}$ )

### GW Astronomy

NASA, JPL-Caltech, Spitzer Space Telescope

## Why are Massive Stars Important?

Nucleosynthesis & Chemical Evolution

#### Star Formation 🤸

Ň

#### Ionizing Radiation ሩ

# Supernovae (if $M_{ZAMS} \gtrsim 8 M_{\odot}$ )

### GW Astronomy

NASA, JPL-Caltech, Spitzer Space Telescope

# $\sim 70\%$ of O type stars are in close binaries

(e.g. Mason *et al.* '09, Sana & Evans '11, Sana *et al.* '12, Kiminki & Kobulnicky '12, Kobulnicky *et al.* '14)

# $\sim 10\%$ of O type stars are runaways!

(e.g. Blaauw '61, Gies '87, Stone '91)



# 30 Doradus

 $Z = Z_{\rm LMC}$ 



### Massive stars have companions

ANTON PANNEKOEK INSTITUTE

#### Average number of companions $f_O \simeq 2.8$



## **Binary Zoo**

Physical processes

- Irradiation
- Mass Transfer
- Tidal effects







## Physical processes

- Irradiation
- Mass Transfer
- Tidal effects

 $\Rightarrow \text{ many more parameters:}$  $q \stackrel{\text{def}}{=} \frac{M_2}{M_1}, P \text{ (or } a\text{), } e, \dots$ 





# Physical processes

- Irradiation
- Mass Transfer
- Tidal effects

⇒ many more parameters:  $q \stackrel{\text{def}}{=} \frac{M_2}{M_1}$ , *P* (or *a*), *e*, ...

# Astrophysical outcome

- Stripped stars
- Contact binaries
- Runaways & "walkaway" stars
- Mergers







#### Introduction: Massive Stars

#### **Computational astrophysics**

- Stellar evolution & structure
- Binary Population Synthesis

#### (If you care) preliminary results

- Can stellar wind change the final fate of a massive star?
- What physics can we learn from breaking apart binaries?



### What should not happen







#### How can we "look" inside a star?

ANTON PANNEKOEK INSTITUTE

Figures Credits: NASA







#### How can we "look" inside a star?

ANTON PANNEKOEK INSTITUTE

Figures Credits: NASA





# We simply can't!!

Other Q: How can we observe how one star evolves?



## So what to do?



### Build a theory from first principles;

- Plug it in a computer;
- Get out a model;
- Find a smart way to compare it to what we can observe.

#### **Advantages**

- Full control over the parameters ⇒ Numerical Experiments;
- Allow to focus on interesting things (e.g. no reddening!);
- Allow to deal with long-lasting, rare, inaccessible phenomena;

#### Drawbacks

- Numerical errors;
- Limited computational resources;
- Nature  $\gg$  Theory  $\gg$  Model.

"All models are wrong, but some are useful" - G. Box



# The Stellar Evolution Code:



ANTON PANNEKOEK INSTITUTE

is a *tool*, not a theory!

ME

# What does it stand for? Modules for Experiments in Stellar

# **A**strophysics

#### **References:**

Paxton *et al.* 2011, ApJs192,3

Paxton et al. 2013, ApJs208,4

Paxton et al. 2015, ApJs220,15

mesa.sourceforge.net

mesastar.org

Open Source ⇔ Open Know How "An algorithm must be seen to be believed" – D. Knuth





# Prohibitive computational cost of 3D $\Rightarrow$ 1D, but stars are *not* spherical-symmetric!

Need of parametric approximations for:

- Rotation  $\Rightarrow$  "Shellular Approximation";
- Magnetic Fields;
- Convection  $\Rightarrow$  Mixing Length Theory (MLT);
- (Some) mixing processes;
  - Beware of systematic errors!



# Hydrostatic approximation





... but stars are not necessarily static!



Other examples:

- He flash,
- Outburst and Eruptions,
- Impulsive mass loss,
- RLOF,

• ...

Figure:  $\eta$  Car, APOD.







#### Dynamical correction to static equilibrium

$$\left| \frac{dP}{dr} = -\frac{Gm(r)\rho}{r^2} - a(r)\rho \right|$$

$$a(r) \stackrel{\text{def}}{=} \frac{dv}{dt} = \frac{d^2r}{dt^2} \ll \frac{Gm(r)}{r^2}$$

"Calculated Passively"







Dynamical correction to static equilibrium

$$rac{dP}{dr} = -rac{Gm(r)
ho}{r^2} - a(r)
ho$$

$$a(r) \stackrel{\text{def}}{=} \frac{dv}{dt} = \frac{d^2r}{dt^2} \ll \frac{Gm(r)}{r^2}$$
 "Calculated Passively"

#### Explicitly time-dependent reformulation

$$\frac{\partial v}{\partial t} = -\frac{Gm(r)}{r^2} - \frac{4\pi r^2}{3}\frac{dP}{dm} + \boldsymbol{g}_{\text{visc}}$$

(Euler eq. + reformulation of all stellar structure equations)



#### Discretization



ANTON PANNEKOEK INSTITUTE





ANTON PANNEKOEK





#### Check that physical results do not depend on discretization



| Ň× | Reformulation                                                                  | of the (1D-) E                                                         | quations f                                     | 7  |
|----|--------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------|----|
|    | Physical Theory:                                                               | Numerica                                                               | ANTON PANNERO<br>INSTITU<br>Il Implementation: | EK |
|    | $rac{dP}{dr} = -rac{Gm(r) ho}{r^2} \ (+a ho)$                                | $\Leftrightarrow$                                                      |                                                |    |
|    | $rac{dm}{dr} = 4\pi r^2  ho$                                                  | $\Leftrightarrow$                                                      |                                                |    |
|    | $\frac{dT}{dr} = -\frac{3}{16\pi ac} \frac{\kappa \rho L}{r^2 T^3}$            | $\Leftrightarrow$                                                      |                                                |    |
|    | $rac{dL}{dr} = 4\pi r^2  ho \varepsilon$                                      | $\Leftrightarrow$                                                      |                                                |    |
|    | $P \equiv P( ho, \mu, T)$                                                      | ⇔ _                                                                    |                                                |    |
|    | $\left.\frac{dX_i}{dt}\right _r = \left[\sum_j \mathcal{P}_{j,i}(T, J)\right]$ | $(o) - \sum_{k} \mathcal{D}_{i,k}(T, \rho) \bigg] + \bigg[ e^{i t h} $ | $\sigma_i \nabla^2 X_i \Big]$                  |    |

| Reformulation                                                                  | of                | the (1D-) Equations                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Physical Theory:                                                               |                   | ANTON PANNEKOEK<br>INSTITUTE<br>Numerical Implementation:                                                                                                                                                                   |
| $\frac{dP}{dr} = -\frac{Gm(r)\rho}{r^2} \ (+a\rho)$                            | $\Leftrightarrow$ | $\frac{P_{k-1} - P_k}{0.5(dm_{k-1} - dm_k)} = -\frac{Gm_k}{4\pi r_k^4} - \frac{a_k}{4\pi r_k^2}$                                                                                                                            |
| $\frac{dm}{dr} = 4\pi r^2 \rho$                                                | $\Leftrightarrow$ | $\ln(r_k) = \frac{1}{3} \ln \left[ r_{k+1}^3 + \frac{3}{4\pi} \frac{dm_k}{\rho_k} \right]$                                                                                                                                  |
| $\frac{dT}{dr} = -\frac{3}{16\pi ac} \frac{\kappa \rho L}{r^2 T^3}$            | $\Leftrightarrow$ | $\frac{T_{k-1}-T_k}{(dm_{k-1}-dm_k)/2} = -\nabla_{T,k} \left( \frac{dP}{dm} \bigg _k \right) \frac{\tilde{T}_k}{\tilde{P}_k}$                                                                                               |
| $\frac{dL}{dr} = 4\pi r^2 \rho \varepsilon$                                    | $\Leftrightarrow$ | $L_k - L_{k+1} = dm_k \{\varepsilon_{\rm nuc} - \varepsilon_{\nu} + \varepsilon_{\rm grav}\}$                                                                                                                               |
| $P \equiv P( ho, \mu, T)$                                                      | $\Leftrightarrow$ | ${m P}\equiv {m P}( ho,\mu,T)$                                                                                                                                                                                              |
| $\left.\frac{dX_i}{dt}\right _r = \left[\sum_j \mathcal{P}_{j,i}(T, r)\right]$ | o) —              | $\sum_{k} \mathcal{D}_{i,k}(T,\rho) \right] + \left[ \sigma_i \nabla^2 X_i \right]$ $\qquad \qquad $ |
| $X_{i,k}(t_n + \Delta t_{n+1}) = X_{i,k}(t_n)$                                 | $) + \Delta$      | $t_{n+1}\left(\frac{dX_{i,k}}{dt}\right)_{nuc} + \frac{(X_{i,k}-X_{i,k-1})\sigma_k\Delta t_{n+1}}{0.5(dm_{k-1}-dm_k)}$                                                                                                      |

Ŵ

| Reformulation                                                                    | of th                 | e (1D-) Equations                                                                                                               |
|----------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Physical Theory:                                                                 |                       | ANTON PANNEKOEK<br>INSTITUTE<br>Numerical Implementation:                                                                       |
| $\frac{dP}{dr} = -\frac{Gm(r)\rho}{r^2} (+a\rho)$                                | $\Leftrightarrow$     | $\frac{P_{k-1} - P_k}{0.5(\frac{dm_{k-1}}{dm_{k-1}} - \frac{dm_k}{dm_k})} = -\frac{Gm_k}{4\pi r_k^4} - \frac{a_k}{4\pi r_k^2}$  |
| $\frac{dm}{dr} = 4\pi r^2 \rho$                                                  | $\Leftrightarrow$     | $\ln(r_k) = \frac{1}{3} \ln \left[ r_{k+1}^3 + \frac{3}{4\pi} \frac{dm_k}{\rho_k} \right]$                                      |
| $\frac{dT}{dr} = -\frac{3}{16\pi ac} \frac{\kappa \rho L}{r^2 T^3}$              | ⇔ (dı                 | $\frac{T_{k-1} - T_k}{m_{k-1} - dm_k)/2} = -\nabla_{T,k} \left( \frac{dP}{dm} \bigg _k \right) \frac{\tilde{T}_k}{\tilde{P}_k}$ |
| $\frac{dL}{dr} = 4\pi r^2 \rho \varepsilon$                                      | $\Leftrightarrow L_k$ | $-L_{k+1} = \frac{dm_k}{\varepsilon_{\text{nuc}} - \varepsilon_{\nu} + \varepsilon_{\text{grav}}}$                              |
| ${m P}\equiv {m P}( ho,\mu,T)$                                                   | $\Leftrightarrow$     | ${m P}\equiv {m P}( ho,\mu,{m T})$                                                                                              |
| $\left.\frac{dX_i}{dt}\right _r = \left[\sum_j \mathcal{P}_{j,i}(T, \mu)\right]$ | $(p) - \sum_{k} T$    | $\mathcal{D}_{i,k}(T,\rho) \bigg] + \bigg[\sigma_i \nabla^2 X_i \bigg]$                                                         |
| $X_{i,k}(t_n + \Delta t_{n+1}) = X_{i,k}(t_n)$                                   | $+\Delta t_{n+1}$     | $1\left(\frac{dX_{i,k}}{dt}\right)_{\mathrm{nuc}} + \frac{(X_{i,k} - X_{i,k-1})\sigma_k\Delta t_{n+1}}{0.5(dm_{k-1} - dm_k)}$   |

Ň



#### Interlude: coordinates



#### Lagrangian





**Eulerian** 

 $v \equiv v(m, t)$ 

 $\mathbf{v} \equiv \mathbf{v}(\mathbf{r}, t)$ 

| Reformulation                                                                     | of the                       | e (1D-) Equa                                                                       | ations ff                                                                 | 1        |
|-----------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------|
| Physical Theory:                                                                  |                              | Numerical Imp                                                                      | ANTON PANNEKO<br>INSTITU<br>Dementation:                                  | EK<br>TE |
| $\frac{dP}{dr} = -\frac{Gm(r)\rho}{r^2} \ (+a\rho)$                               | $\Leftrightarrow$            | $\frac{P_{k-1}-P_k}{0.5(\frac{dm_{k-1}}{dm_k})} =$                                 | $-\frac{Gm_k}{4\pi r_k^4} - \frac{a_k}{4\pi r_k^2}$                       |          |
| $\frac{dm}{dr} = 4\pi r^2 \rho$                                                   | $\Leftrightarrow$            | $\ln(r_k) = \frac{1}{3} \ln\left[r_k^3\right]$                                     | $\left[\frac{3}{4+1}+\frac{3}{4\pi}\frac{dm_k}{\rho_k}\right]$            |          |
| $\frac{dT}{dr} = -\frac{3}{16\pi ac} \frac{\kappa \rho L}{r^2 T^3}$               | ⇔ ( <mark>dn</mark>          | $\frac{T_{k-1}-T_k}{m_{k-1}-dm_k)/2}=-\nabla T_k$                                  | $k \left( \frac{dP}{dm} \bigg _k \right) \frac{\tilde{T}_k}{\tilde{P}_k}$ |          |
| $rac{dL}{dr} = 4\pi r^2  ho \varepsilon$                                         | $\Leftrightarrow L_k$        | $-L_{k+1} = \frac{dm_k}{\varepsilon_{\text{nuc}}}$                                 | $-\varepsilon_{\nu}+\varepsilon_{\rm grav}\}$                             |          |
| $P \equiv P( ho, \mu, T)$                                                         | $\Leftrightarrow$            | Р                                                                                  | $\equiv {\it P}( ho, \mu, T)$                                             |          |
| $\left.\frac{dX_i}{dt}\right _r = \left[\sum_j \mathcal{P}_{j,i}(T, \rho)\right]$ | $(p) - \sum_{k} \mathcal{I}$ | $\mathcal{D}_{i,k}(T,\rho) \bigg] + \bigg[\sigma_i \nabla^2 v \bigg]$              | $X_i$                                                                     |          |
| $X_{i,k}(t_n + \Delta t_{n+1}) = X_{i,k}(t_n)$                                    | $+\Delta t_{n+1}$            | $\left(\frac{dX_{i,k}}{dt}\right)_{\text{nuc}} + \frac{(X_{i,k}-X_{i,k})}{0.5(d)}$ | $(K_{i,k-1})\sigma_k\Delta t_{n+1}$<br>$(m_{k-1}-dm_k)$                   |          |

Ŵ

| Reformulation                                                                    | of the                | e (1D-) Equa                                                                         | ations                                                                                         | AA                    |
|----------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------|
| Physical Theory:                                                                 |                       | Numerical Imp                                                                        | ANTON PANN<br>INS<br>Diementation                                                              | iekoek<br>titute<br>I |
| $\frac{dP}{dr} = -\frac{Gm(r)\rho}{r^2} \ (+a\rho)$                              | $\Leftrightarrow$     | $\frac{P_{k-1}-P_k}{0.5(\frac{dm_{k-1}-dm_k}{dm_k})} =$                              | $-\frac{Gm_k}{4\pi r_k^4}-\frac{a_k}{4\pi r_k^4}$                                              | 2                     |
| $\frac{dm}{dr} = 4\pi r^2 \rho$                                                  | $\Leftrightarrow$     | $\ln(r_k) = \frac{1}{3} \ln\left[r_k^2\right]$                                       | $\frac{3}{4\pi} + \frac{3}{4\pi} \frac{dm_k}{\rho_k}$                                          |                       |
| $\frac{dT}{dr} = -\frac{3}{16\pi ac} \frac{\kappa \rho L}{r^2 T^3}$              | ⇔ ( <mark>dr</mark>   | $\frac{T_{k-1}-T_k}{m_{k-1}-dm_k)/2} = -\nabla_T$                                    | $\tilde{I}_{,k}\left(\left.\frac{dP}{dm}\right _{k}\right)\frac{\tilde{T}_{l}}{\tilde{P}_{l}}$ | <u>k</u><br>k         |
| $rac{dL}{dr} = 4\pi r^2  ho \varepsilon$                                        | $\Leftrightarrow L_k$ | $-L_{k+1} = dm_k \{\varepsilon_{nuc}\}$                                              | $\varepsilon - \varepsilon_{\nu} + \varepsilon_{\rm grav}$                                     | }                     |
| $P \equiv P( ho, \mu, T)$                                                        | $\Leftrightarrow$     | P                                                                                    | $\equiv P( ho, \mu, T)$                                                                        | )                     |
| $\left.\frac{dX_i}{dt}\right _r = \left[\sum_j \mathcal{P}_{j,i}(T,\rho)\right]$ | $(p) - \sum_{k} 2$    | $\mathcal{D}_{i,k}(T,\rho) \bigg] + \bigg[\sigma_i \nabla^2 v \bigg]$                | $X_i$                                                                                          |                       |
| $X_{i,k}(t_n + \Delta t_{n+1}) = X_{i,k}(t_n)$                                   | $+\Delta t_{n+}$      | $-1\left(\frac{dX_{i,k}}{dt}\right)_{\text{nuc}} + \frac{(X_{i,k}-X_{i,k})}{0.5(a)}$ | $\frac{X_{i,k-1})\sigma_k\Delta t_{n+1}}{M_{k-1}-dm_k}$                                        |                       |

Ň



### The Matrix to Solve





Figure: From Paxton et al. 2013, ApJs, 208, 4. Black dots are non-zero entries.



# Algorithm



- Henyey code: varies all the quantities in each zone until an acceptable solution is found (≠ Shooting Method);
- Generalized Newton-Raphson solver (⇒ FIRST ORDER):

$$0 = \mathbb{F}(\mathbf{y}) \simeq \mathbb{F}(\mathbf{y}_i + \delta \mathbf{y}_i) = \mathbb{F}(\mathbf{y}_i) + \left[\frac{d\mathbb{F}(\mathbf{y})}{d\mathbf{y}}\right]_i \delta \mathbf{y}_i + O((\delta \mathbf{y}_i)^2) ;$$





#### **NR-Solver Iterations**





Figure: Two models after the end of core hydrogen burning





ANTON PANNEKOEK INSTITUTE

#### **Introduction: Massive Stars**

#### **Computational astrophysics**

- Stellar evolution & structure
- Binary Population Synthesis

#### (If you care) preliminary results

• Can stellar wind change the final fate of a massive star?

What physics can we learn from breaking apart binaries?



binary\_c: R. G. Izzard et al. '04, '06, '09; S. E. de Mink et al. '13



## **Initial Distributions**



Kroupa '01

Total Population:  $2 \times 10^6$  stars







ANTON PANNEKOEK INSTITUTE

#### **Introduction: Massive Stars**

#### **Computational astrophysics**

- Stellar evolution & structure
- Binary Population Synthesis

### (If you care) preliminary results

Can stellar wind change the final fate of a massive star?What physics can we learn from breaking apart binaries?

## Why are Massive Stars Important?

# Nucleosynthesis & Chemical Evolution

### Star Formation 🤸

ŵ

#### Ionizing Radiation 🔶

# Supernovae (if $M_{ZAMS} \gtrsim 8 M_{\odot}$ )

### GW Astronomy

# Mass loss for the environment:

- Pollution of ISM
- Tailoring of CSM
- Trigger for Star Formation

#### Mass loss for the star

- Evolutionary Timescales
- Appearance & Classification (e.g. WR)
- Light Curve and Explosion Spectrum
- Final Fate: BH, NS or WD?



### Possible Mass Loss Mechanisms



ANTON PANNEKOEK INSTITUTE

# Radiative Driving ↓

Stellar Winds



Figure: Betelgeuse



### Possible Mass Loss Mechanisms



ANTON PANNEKOEK INSTITUTE

#### Dynamical Instabilities ↓↓ LBVs, Impulsive Mass Loss, Pulsations, Super-Eddington Winds



Figure:  $\eta$  Carinae.



### Possible Mass Loss Mechanisms



ANTON PANNEKOEK INSTITUTE

#### Binary interactions ↓ Roche Lobe Overflow, Common Envelope, Fast rotation



Figure: Artist Impression



# Mass loss is dynamical...





... but stellar evolution codes assume hydrostatic equilibrium:

$$\frac{dP}{dr} = -\frac{Gm(r)\rho}{r^2}$$

Open question: Which dominates in term of total mass lost?



Problems: High Non-Linearity and Clumpiness



# Clumpiness

# Inhomogeneities: $f_{\rm cl} \stackrel{\rm def}{=} \frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2} \neq 1 \Rightarrow \dot{M} \neq 4\pi r^2 \rho v(r)$





# Clumpiness

# Inhomogeneities:

$$f_{\rm cl} \stackrel{\rm def}{=} \frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2} \neq 1 \Rightarrow \dot{M} \neq 4\pi r^2 \rho v(r)$$

# Risk: Possible overestimation of the wind mass loss rate



### Mass loss in MESA





Figure: From Smith 2014, ARA&A, 52, 487S



## Combination of algorithms







Grid of  $Z_{\odot} \simeq 0.019$ , non-rotating stellar models: • Initial mass:

$$M_{\rm ZAMS} = \{15, 20, 25, 30, 35\} M_{\odot};$$

• Efficiency:

$$\eta = \{1, \frac{1}{3}, \frac{1}{10}\};$$

• Combinations of wind mass loss rates for "hot"  $(T_{\rm eff} \ge 15 \ [\rm kK])$ , "cool"  $(T_{\rm eff} < 15 \ [\rm kK])$  and WR:

Kudritzki *et al.* '89; Vink *et al.* '00, '01; Van Loon *et al.* '05; Nieuwenhuijzen *et al.* '90; De Jager *et al.* '88; Nugis & Lamers '00; Hamann *et al.* '98.



#### Wind mass loss history





#### Impact on the final mass





#### Impact on the final mass





#### Impact on the final mass





# "Explodability" & Compactness



 $\xi_{\mathcal{M}}(t) \stackrel{\mathrm{def}}{=} rac{\mathcal{M}/M_{\odot}}{R(\mathcal{M})/1000 \ \mathrm{km}}$ 

• "Large"  $\xi_{2.5} \Rightarrow$  harder to explode  $\Rightarrow$  BH formation • "Small"  $\xi_{2.5} \Rightarrow$  easier to explode  $\Rightarrow$  NS formation

(e.g. O'Connor & Ott 2011, Ugliano *et al.* 2012, Sukhbold & Woosley 2014)





Critical point: Ne core burning/C shell burning



 $\xi_{2.5}$  @ O depletion







#### $\xi_{2.5}$ @ Oxygen Depletion

ANTON PANNEKOEK INSTITUTE



# Computing Advanced Burning Stages

• Initially small effect  $\Rightarrow$  N<sub>zones</sub>  $\gtrsim$  20000;

ANTON PANNEKOEK INSTITUTE

• Complex nuclear burning  $\Rightarrow$   $N_{\rm iso} \gtrsim$  200;



SurfSara's Cartesius Computer.





 $\xi_{2.5}$  Oscillations









INSTIT

ANTON P

Uncertainties in stellar winds:

- pre-SN mass  $\Rightarrow$  no  $M_f \equiv M_f(M_{\text{ZAMS}})$  map;
- core structure  $\Rightarrow$  "explodability" & remnant.







ANTON PANNEKOEK INSTITUTE

#### **Introduction: Massive Stars**

#### **Computational astrophysics**

- Stellar evolution & structure
- Binary Population Synthesis

### (If you care) preliminary results

- Can stellar wind change the final fate of a massive star?
- What physics can we learn from breaking apart binaries?



## From Binary to Runaway





## SN natal kick





#### $\nu$ emission and/or ejecta anisotropies



### SN natal kick

Mösta et al. 2014

 $\boldsymbol{\nu}$  emission and/or ejecta anisotropies





# 30 Doradus







O-type from disrupted binaries only







ANTON P

O-type from disrupted binaries only







 $v_{\rm RW} \, [{\rm km \ s^{-1}}]$ 



#### Rotational Velocity & LOS velocity





**Disrupted ratio** 







### Mass function of disrupted binaries

ANTON PANNEKOEK

