Massive widowed stars:

Runaways and walkaways from binary disruptions

Mathieu Renzo PhD in Amsterdam

Collaborators: S. E. de Mink, E. Zapartas, Y. Götberg, S. Justham, R. G. Izzard

NASA, JPL-Caltech, Spitzer Space Telescope

Binary Supernova

- · Ejects initially less massive star
- Requires SN kick
- Final $v \simeq v_2^{\text{orb}}$
- Leaves binary signature (fast rotation, He/N enhancement, lower apparent age)

Two ejection mechanisms

Binary Supernova

- Ejects initially less massive star
- Requires SN kick
- Final $v \simeq v_2^{\text{orb}}$
- Leaves binary signature (fast rotation, He/N enhancement, lower apparent age)

Dynamical Ejection

- N-body interactions
- (Typically) least Massive thrown out

...Binaries are still important!

- (Binding) Energy reservoir
- Cross section $\propto a^2 \gg R_*^2$

but might not leave signature

ANTON PANNEKOEK INSTITUTE

Ejection Mechanisms

• Differences in resulting runaway stars

Methods

Population synthesis

Results

Lessons from constant SFHPreliminary: reproducing 30 Doradus

Conclusions

Back of the envelope estimates

Izzard et al. '04, '06, '09; de Mink et al. '13

ANTON PANNEKOEK INSTITUTE

Ejection Mechanisms

• Differences in resulting runaway stars

Methods

Population synthesis

Results

Lessons from constant SFH

• Preliminary: reproducing 30 Doradus

Conclusions

• Back of the envelope estimates

Velocity distribution: Runaways

ANTON PANNEKOEK INSTITUTE

Velocity distribution: Walkaways

ANTON PANNEKOEK

INSTITUTE

Take home points:

- Walkaways outnumber the runaways by \sim 10×
- Binaries barely produce $v_{\rm dis}\gtrsim 60\,{\rm km~s^{-1}}$
- All runaways from binaries are post-interaction objects Renzo *et al.*, to be submitted

×Ň×

Runaway fraction for O-type too low!

Physical Assumptions	Parameter	value	D [%]	f_{15}^{RW} [%]	f_{15}^{WA} [%]
Fiducial population		see Sec. 2	86	0.5	10.1
Mass transfer efficiency	$\beta_{\rm RLOF}$	0	86	0.3	1.5
		0.5	87	1.2	8.6
		1	87	0.7	14.7
Angular momentum loss	γrlof	$\gamma_{ m disk}$	85	0.2	7.3
		1	86	0.6	9.9
Common envelope efficiency	$\alpha_{\rm CE}$	0.1	86	0.5	10.1
common envelope enterency		10	84	0.5	10.0
Mass ratio for case A merger	$q_{ m crit, A}$	0.80	86	0.5	10.2
Muss fullo for cuse fr merger		0.25	86	0.6	9.4
Mass ratio for case B merger	<i>q</i> crit, B	1.0	89	0.0	5.0
Mass faile for case D merger		0.0	85	0.6	10.1
	$\sigma_{ m kick}$	0	16	-	0.0
Natal kick velocity		300	87	0.6	10.3
		1000	91	1.2	11.2
Natal kick amplitude	$(\sigma_{\rm kick}, f_b)$	(100, 0)	84	0.3	8.7
Double maxwellian with $\sigma_{ m kick}$	$= 30 \mathrm{km}\mathrm{s}^{-1}$	for $M_{\rm NS} \le 1.35$	65	0.5	4.9
Restricted kick directions		$\alpha < 10 \deg$	87	0.6	10.3
Resultied Rick difections		$\frac{\pi}{2} - \alpha < 45 \deg$	86	0.5	10.0
Fallback fraction	f_b	0	97	1.5	12.1
Metallicity	-	0.0002	77	2.6	7.7
	Z	0.0047	84	1.2	10.3
		0.03	88	0.5	10.0

Robust outcome (but less bad at low *Z*)

ANTON PANNER

INSTITUTE

 $f_{15}^{\rm RW} \stackrel{\rm def}{=} \frac{\# \text{ runaways}}{\# \text{ stars}}$

Observed:

 $\mathit{f_{15}^{RW}}\simeq 10-20\%$

$\sim \frac{2}{3}$ of runaways from binaries

×××

Runaway fraction for O-type too low!

Physical Assumptions	Parameter	value	\mathcal{D}	f_{15}^{RW}	f_{15}^{WA}
Fiducial population		saa Saa 🤉	[%]	[%]	[%]
Fiducial population		see sec. 2	00	0.5	10.1
Mass transfer efficiency	$\beta_{ m RLOF}$	0	86	0.3	1.5
		0.5	87	1.2	8.6
		1	87	0.7	14.7
Angular momentum loss	γrlof	$\gamma_{ m disk}$	85	0.2	7.3
		1	86	0.6	9.9
Common anvalona afficiancy	$\alpha_{\rm CE}$	0.1	86	0.5	10.1
common envelope enterency		10	84	0.5	10.0
Mass ratio for case A merger	$q_{ m crit, A}$	0.80	86	0.5	10.2
Mass ratio for case A merger		0.25	86	0.6	9.4
Mass ratio for case B merger	<i>q</i> crit, B	1.0	89	0.0	5.0
Mass ratio for case B merger		0.0	85	0.6	10.1
Natal kick velocity	$\sigma_{ m kick}$	0	16	-	0.0
		300	87	0.6	10.3
		1000	91	1.2	11.2
Natal kick amplitude	$(\sigma_{\rm kick}, f_b)$	(100, 0)	84	0.3	8.7
Double maxwellian with $\sigma_{\rm kick}$	$= 30 \text{km} \text{s}^{-1}$	for $M_{\rm NS} \le 1.35$	65	0.5	4.9
Restricted kick directions		$\alpha < 10 \deg$	87	0.6	10.3
resultion field anotablis		$\frac{\pi}{2} - \alpha < 45 \deg$	86	0.5	10.0
Fallback fraction	f_b	0	97	1.5	12.1
Metallicity		0.0002	77	2.6	7.7
	Z	0.0047	84	1.2	10.3
		0.03	88	0.5	10.0

ANTON PANNEKOEK INSTITUTE

Robust outcome (but less bad at low Z)

$$r_{\rm RW} \stackrel{\rm def}{=} \frac{\# \text{ runaways}}{\# \text{ stars}}$$

Observed:

$$f_{15}^{\mathrm{RW}}\simeq 10-20\%$$

$\sim\!\frac{2}{3}$ of runaways from binaries

Ň×

Runaway fraction for O-type too low!

Physical Assumptions	Parameter	value	D [%]	f_{15}^{RW} [%]	f_{15}^{WA} [%]
Fiducial population		see Sec. 2	86	0.5	10.1
Mass transfer efficiency	$\beta_{ m RLOF}$	0	86	0.3	1.5
		0.5	87	1.2	8.6
		1	87	0.7	14.7
Angular momentum loss	γrlof	$\gamma_{ m disk}$	85	0.2	7.3
		1	86	0.6	9.9
Common envelope efficiency	(/cr	0.1	86	0.5	10.1
common envelope encenery	UCE	10	84	0.5	10.0
Mass ratio for case A merger	$q_{ m crit, A}$	0.80	86	0.5	10.2
		0.25	86	0.6	9.4
Mass ratio for case B merger	<i>q</i> crit, B	1.0	89	0.0	5.0
		0.0	85	0.6	10.1
Natal kick velocity	$\sigma_{ m kick}$	0	16	-	0.0
		300	87	0.6	10.3
		1000	91	1.2	11.2
Natal kick amplitude	$(\sigma_{\rm kick}, f_b)$	(100, 0)	84	0.3	8.7
Double maxwellian with $\sigma_{\rm kick}$	$= 30 \mathrm{km}\mathrm{s}^{-1}$	for $M_{\rm NS} \le 1.35$	65	0.5	4.9
Pastricted kick directions		$\alpha < 10 \deg$	87	0.6	10.3
Resulting Kick directolis		$\frac{\pi}{2} - \alpha < 45 \deg$	86	0.5	10.0
Fallback fraction	f_b	0	97	1.5	12.1
Metallicity	-	0.0002	77	2.6	7.7
	Z	0.0047	84	1.2	10.3
		0.03	88	0.5	10.0

Robust outcome

ANTON PANNER

INSTITUTE

(but less bad at low Z)

$$r_{15}^{\rm RW} \stackrel{\rm def}{=} \frac{\# \text{ runaways}}{\# \text{ stars}}$$

Observed:

$$\mathit{f_{15}^{RW}}\simeq10-20\%$$

$\sim\!\frac{2}{3}$ of runaways from binaries

×Ň

Runaway fraction for O-type too low!

Physical Assumptions	Parameter	value	\mathcal{D} [%]	f_{15}^{RW} [%]	f_{15}^{WA} [%]
Fiducial population		see Sec. 2	86	0.5	10.1
		0	86	0.3	1.5
Mass transfer efficiency	$\beta_{\rm RLOF}$	0.5	87	1.2	8.6
		1	87	0.7	14.7
Angular momentum loss	γrlof	$\gamma_{ m disk}$	85	0.2	7.3
		1	86	0.6	9.9
Common envelope efficiency	0/cm	0.1	86	0.5	10.1
common envelope enterency	ace	10	84	0.5	10.0
Mass ratio for case A merger	$q_{ m crit, A}$	0.80	86	0.5	10.2
		0.25	86	0.6	9.4
Mass ratio for case B merger	<i>q</i> crit, B	1.0	89	0.0	5.0
		0.0	85	0.6	10.1
		0	16	-	0.0
Natal kick velocity	$\sigma_{ m kick}$	300	87	0.6	10.3
		1000	91	1.2	11.2
Natal kick amplitude	$(\sigma_{\rm kick}, f_b)$	(100, 0)	84	0.3	8.7
Double maxwellian with $\sigma_{ m kick}$	$= 30 \mathrm{km} \mathrm{s}^{-1}$	for $M_{\rm NS} \le 1.35$	65	0.5	4.9
Restricted kick directions		$\alpha < 10 \deg$	87	0.6	10.3
Resultied Rick difections		$\frac{\pi}{2} - \alpha < 45 \deg$	86	0.5	10.0
Fallback fraction	f_b	0	97	1.5	12.1
	-	0.0002	77	2.6	7.7
Metallicity	Z	0.0047	84	1.2	10.3
		0.03	88	0.5	10.0

Robust outcome (but less bad at low Z)

ANTON PANNER

INSTITUTE

$$r_{15}^{\rm RW} \stackrel{\rm def}{=} \frac{\# \text{ runaways}}{\# \text{ stars}}$$

Observed:

$$\mathit{f_{15}^{\mathrm{RW}}\simeq 10-20\%}$$

$\sim\!\frac{2}{3}$ of runaways from binaries

ANTON PANNEKOEK INSTITUTE

Ejection Mechanisms

• Differences in resulting runaway stars

Methods Population synthesis

Results

- Lessons from constant SFH
- Preliminary: reproducing 30 Doradus

Conclusions

Back of the envelope estimates

30 Doradus sample: IMF & SFH

30 Doradus sample: IMF & SFH

O-type runaways

Largest homogeneous sample available to date INSTITUTE

O-type runaways

Largest homogeneous sample available to date INSTITUTE

O-type runaways

ANTON PANNFKOEK TUTE

O-type runaways

ANTON PANNFKOEK

Mass-velocity distribution

Mass-velocity distribution

ANTON PANNEKOEK INSTITUTE

Ejection Mechanisms

• Differences in resulting runaway stars

Methods

• Population synthesis

Results

Lessons from constant SFHPreliminary: reproducing 30 Doradus

Conclusions

Back of the envelope estimates

Preliminary estimates for 30 Doradus

Observed O-type runaways $N_{
m rw} \simeq 23 \Rightarrow f^{
m RW} \sim 8\%$

say ~10 from binaries ↓ Expected ~ 100 walkaways ↓ Contamination of "bona-fide" O

stars by binary products?

Preliminary estimates for 30 Doradus

Observed O stars $N_{ m tot} \simeq 300$

 \sim 10 % \simeq 30 walkaways \Downarrow

Contamination less dramatic

\sim 1 % \simeq 3 runaways \Downarrow

Wrong RLOF and/or explosion physics?

Observed O-type runaways $N_{
m rw} \simeq 23 \Rightarrow f^{
m RW} \sim 8\%$

say ~10 from binaries ↓ Expected ~ 100 walkaways ↓ Contamination of "bona-fide" O stars by binary products?

- ~75% of binaries disrupted by first SN INSTITUT
- The vast majority produce slow "walkaways"
- O-type runaway fraction lower by ${\sim}10{\times}$

Future plans

Try to reproduce/predict **all** binary products in 30 Doradus (Runaways, X-ray sources, # BHs, # NSs, etc.)

- · Vary input physics and initial distributions
- Compare models (Bayesian approach)

Q: SFH beyond 10Myr ago?

Probability distribution within the error bars?

- ~75% of binaries disrupted by first SN ANTON PANNEKOE
- The vast majority produce slow "walkaways"
- O-type runaway fraction lower by ${\sim}10{\times}$

Future plans

Try to reproduce/predict **all** binary products in 30 Doradus (Runaways, X-ray sources, # BHs, # NSs, etc.)

- · Vary input physics and initial distributions
- Compare models (Bayesian approach)

Q: SFH beyond 10Myr ago?

Probability distribution within the error bars? Thank you!

Backup slides

Analitical estimates

ANTON PANNEKOEK INSTITUTE

Hard to not widen the binary during interactions!

Mass-velocity varying the natal kick

ANTON PANNEKOEK INSTITUTE

ANTON PANNEKOEK INSTITUTE

Q: What is the probability of drawing the observed runaways from a synthetic population \mathcal{M} ?

$$\log_{10} \left(\mathcal{L}_{\mathcal{M}} \right) \stackrel{\text{def}}{=} \sum_{k=1}^{N_{\text{rw}}} \log_{10} \left(\mathcal{P}(\mathbf{v}_{\text{dis}}^k, \mathbf{v}_{\text{eq}}^k \sin(i) | \mathcal{M}) \right)$$

ANTON PANNEKOEK INSTITUTE

Q: What is the probability of drawing the observed runaways from a synthetic population \mathcal{M} ?

$$\log_{10} \left(\mathcal{L}_{\mathcal{M}} \right) \stackrel{\text{def}}{=} \sum_{k=1}^{N_{\text{rw}}} \log_{10} \left(P(v_{\text{dis}}^k, v_{\text{eq}}^k \sin(i) | \mathcal{M}) \right)$$

(Should run over those from binary disruptions only!)

ANTON PANNEKOEK INSTITUTE

Q: What is the probability of drawing the observed runaways from a synthetic population \mathcal{M} ?

$$\log_{10} \left(\mathcal{L}_{\mathcal{M}} \right) \stackrel{\text{def}}{=} \sum_{k=1}^{N_{\text{rw}}} \log_{10} \left(\mathcal{P}(v_{\text{dis}}^k, v_{\text{eq}}^k \sin(i) | \mathcal{M}) \right)$$

(Should run over those from binary disruptions only!)

Bayes Factor $\mathcal{K}_{\mathcal{M}}$:

$$\text{log}_{10}\left(\mathcal{K}_{\mathcal{M}}\right) \stackrel{\text{def}}{=} \text{log}_{10}(\mathcal{L}_{\mathcal{M}}) - \text{log}_{10}\left(\mathcal{L}_{\text{fiducial}}\right)$$

ANTON PANNEKOEK INSTITUTE

Q: What is the probability of drawing the observed runaways from a synthetic population \mathcal{M} ?

$$\log_{10} \left(\mathcal{L}_{\mathcal{M}} \right) \stackrel{\text{def}}{=} \sum_{k=1}^{N_{\text{rw}}} \log_{10} \left(P(v_{\text{dis}}^k, v_{\text{eq}}^k \sin(i) | \mathcal{M}) \right)$$

(Should run over those from binary disruptions only!)

Bayes Factor $\mathcal{K}_{\mathcal{M}}$:

$$\log_{10}\left(\mathcal{K}_{\mathcal{M}}\right) \stackrel{\text{def}}{=} \log_{10}(\mathcal{L}_{\mathcal{M}}) - \log_{10}\left(\mathcal{L}_{\text{fiducial}}\right)$$

Very preliminary!

Double Maxwellian kick:

(small kick for low mass NS) $\log_{10}{\left(\mathcal{K}
ight)}\simeq-6.5\cdot10^{-5}$

• No fallback scaling:

(large BH kicks, same as NS) $\log_{10}{(\mathcal{K})}\simeq-0.08$

Difficult to distinguish double and single Maxwellian

X-ray sources in 30 Doradus

Runaway age distribution

ANTON PANNEKOEK INSTITUTE

ANTON PANNEKOEK INSTITUTE

Schneider F. N. R., VFTS collaboration, in prep.

Rotation rate

Mass-rotation correlation

25/17

ANTON P

ANNE

Mass-rotation correlation

ANTON PANNER

Mass-rotation correlation

Runaways only

ANTON P

ANNE

Cluster ejection

ANTON PANNI

INSTITUTE

N-body interactions (typically) least massive thrown out. Binaries matter...

- (Binding) Energy reservoir
- Cross section ∝ a² ≫ R²_{*}

Poveda et al., 1967

..but don't necessarily leave imprints!

Spin up, pollution, and rejuvenation

ANTON PANNEKOEK Institute

The binary disruption shoots out the accretor

e.g., Packet '81, Blaauw '93, Cantiello et al. '07, de Mink et al. '13

Ň

SN natal kick

Observationally: $v_{\text{pulsar}} \gg v_{\text{OB-stars}}$

Physically: v emission and/or ejecta anisotropies

Credits: Ott, C. D., Drasco, S.

Fiducial Distributions

30 Doradus

Pros:

- Young region
- homogeneous $Z = Z_{LMC}$
- Multi-epoch spectroscopic coverage complete at $m_{
 m v} \lesssim 17$

(VFTS, Evans et al. '11)

 Complementary constraints (XRB? wang '94)

Cons:

- Young Massive clusters
- Non-trivial SFH

(VFTS, Schneider et al. '18)

ANTON PANNEKOEK INSTITUTE

Massive runaways mass function ($\nu \ge 30 \,\mathrm{km \ s^{-1}}$, $M \ge 7.5 \,M_{\odot}$)

Renzo et al., to be

ANTON PANNEKOEK INSTITUTE

Massive runaways mass function ($v \ge 30 \text{ km s}^{-1}$, $M \ge 7.5 M_{\odot}$)

Renzo et al., to be

Massive runaways mass function ($v \ge 30 \text{ km s}^{-1}$, $M \ge 7.5 M_{\odot}$)

Renzo et al., to be

Massive runaways mass function ($v \ge 30 \text{ km s}^{-1}$, $M \ge 7.5 M_{\odot}$)

Renzo et al., to be

Massive runaways mass function ($\nu \ge 30 \, \mathrm{km \, s^{-1}}$, $M \ge 7.5 \, M_{\odot}$)

31/17

What exactly disrupts the binary?

 \gtrsim 75% of binaries are disrupted

Unbinding Matter

(e.g., Blaauw '61)

• Ejecta Impact

(e.g., Wheeler et al. '75,

Tauris & Takens '98, Liu et al. '15)

SN Natal Kick

(e.g., Shklovskii '70, Janka '16)

What exactly disrupts the binary?

275% of binaries are disrupted ANTON PANNE

Unbinding Matter

(e.g., Blaauw '61)

• Ejecta Impact

(e.g., Wheeler et al. '75,

Tauris & Takens '98, Liu et al. '15)

• SN Natal Kick

(e.g., Shklovskii '70, Janka '16)

(potential) Physics lessons...

... from disrupted binaries

ANTON PANNEKOEK INSTITUTE

BH kicks Binary evolution

Do BH receive natal kicks?

Spatial distribution of X-ray binaries

(e.g., Repetto et al. '12,'15,'16, Mandel '16)

Massive (and WR) runaways

(Dray et al. '05)

Disrupted binaries are "failed" GW sources!

(potential) Physics lessons...

...from disrupted binaries

ANTON PANNEKOEK INSTITUTE

BH kicks Binary evolution

Constraints on binary physics

- Orbital evolution \Leftrightarrow pre-SN period
- Mass transfer efficiency \Leftrightarrow pre-SN M_2
- Angular momentum loss \Rightarrow isotropic re-emission, circumbinary disk, etc.

