Explosions in massive binaries:

"widowed" stars and consequences for GW astronomy

Mathieu Renzo PhD in Amsterdam

S. E. de Mink, E. Zapartas, Y. Götberg, E. Laplace, Collaborators: R. J. Farmer, S. Toonen, S. Justham, R. G. Izzard, P. Marchant, D. J. Lennon, H. Sana, S. N. Shore, ... NASA, JPL-Caltech, Spitzer Space Telescope

Why are massive stars important?

Nucleosynthesis & Chemical Evolution

Ionizing Radiation

ě

Star Formation

Supernovae

GW Astronomy

NASA, JPL-Caltech, Spitzer Space Telescope

Why are massive stars important?

Nucleosynthesis & Chemical Evolution

Ionizing Radiation

Ň

Star Formation

Supernovae

GW Astronomy

NASA, JPL-Caltech, Spitzer Space Telescope

${\sim}70\%$ of O type stars will interact with a companion

(e.g., Mason *et al.* '09, Sana & Evans '11, Sana *et al.* '12, Kiminki & Kobulnicky '12, Kobulnicky *et al.* '14, Almeida *et al.* '17)

LIGO-Virgo | Frank Elavsky | Northwestern

BH or NS?

· Single stars winds impact on the core structure

Keep the stars together

- The most common evolution for massive binaries
- Constraints on BH kicks using runaway "widow"

The most massive (stellar) BHs

- (Pulsational) pair instability
 - The BH mass distribution
 - Induced eccentricity

Conclusions

BH or NS?

· Single stars winds impact on the core structure

Keep the stars together

The most common evolution for massive binaries

• Constraints on BH kicks using runaway "widow"

The most massive (stellar) BHs

- (Pulsational) pair instability
 - The BH mass distribution
 - Induced eccentricity

Conclusions

Problems: High Non-Linearity and Clumpiness

Inhomogeneities: $f_{\rm cl} \stackrel{\rm def}{=} \frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2} \neq 1 \Rightarrow \dot{M} \neq 4\pi r^2 \rho v(r)$

7/51

Risk:

Possible overestimation of the wind mass loss rate

Inhomogeneities: $f_{\rm cl} \stackrel{\text{def}}{=} \frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2} \neq 1 \Rightarrow \dot{M} = \eta \, 4\pi r^2 \rho v(r)$

Aim: quantify systematic uncertainty

Combinations of wind mass loss rates for "hot" ($T_{eff} \ge 15 \, [kK]$), "cool" ($T_{eff} < 15 \, [kK]$) and WR (H deficient):

Kudritzki *et al.* '89; Vink *et al.* '00, '01; Van Loon *et al.* '05; Nieuwenhuijzen *et al.* '90; De Jager *et al.* '88; Nugis & Lamers '00; Hamann *et al.* '98.

ANTON

Impact on the final mass

Impact on the final mass

Pre-explosion appearance

ANTON PANNEKOEK INSTITUTE

Renzo et al. '17

"Explodability" & Compactness

ANTON PANNEKOEK INSTITUTE

 $\xi_{\mathcal{M}}(t) \stackrel{\mathrm{def}}{=} rac{\mathcal{M}/M_{\odot}}{R(\mathcal{M})/1000 \ \mathrm{km}}$

Single parameter to describe the core structure

e.g., O'Connor & Ot	t '11,	
Ugliano et al.	12,	
Sukhbold & Wo	oosley '14,	
but see (for 3D expl	osions):	
Ott <i>et al.</i> '18,		
Kuroda <i>et al.</i> '1	8	
	<i>M</i> =	= 2. 5 I

 $R(\mathcal{M})$

Renzo et al. '17

Log time to core-collapse

Log time to core-collapse

ANTON PANNEKOEK INSTITUTE

BH or NS?

· Single stars winds impact on the core structure

Keep the stars together

The most common evolution for massive binaries

• Constraints on BH kicks using runaway "widow"

The most massive (stellar) BHs

- (Pulsational) pair instability
 - The BH mass distribution
 - Induced eccentricity

Conclusions

Izzard et al. '04, '06, '09; de Mink et al. '13

Binary disruption

Credits: ESO, L. Calçada, M. Kornmesser, S.E. de Mink

ANTON PANNEKOEK INSTITUTE

Spin up, pollution, and rejuvenation

ANTON PANNEKOEK INSTITUTE

The binary disruption shoots out the accretor

Spin up: Packet '81, Cantiello *et al.* '07, de Mink *et al.* '13 Pollution: Blaauw '93 Rejuvenation: Hellings '83, Schneider *et al.* '16

ě

What exactly disrupts the binary?

 86^{+11}_{-9} % of massive binaries are disrupted

Renzo et al. arXiv:1804.09164, Eldridge et al. 11, De Donder et al. 97

Unbinding Matter

(e.g., Blaauw '61)

Ejecta Impact

(e.g., Wheeler et al. '75,

Tauris & Takens '98, Liu et al. '15)

SN Natal Kick

(e.g., Shklovskii '70, Janka '16)

What exactly disrupts the binary?

 86^{+11}_{-9} % of massive binaries are disrupted

Renzo et al. arXiv:1804.09164, Eldridge et al. 11, De Donder et al. 97

Unbinding Matter

(e.g., Blaauw '61)

Ejecta Impact

(e.g., Wheeler et al. '75,

Tauris & Takens '98, Liu et al. '15)

• SN Natal Kick

(e.g., Shklovskii '70, Janka '16)

What exactly disrupts the binary?

 86^{+11}_{-9} % of massive binaries are disrupted

Renzo et al. arXiv:1804.09164, Eldridge et al. 11, De Donder et al. 97

- - Unbinding Matter

(e.g., Blaauw '61)

• Ejecta Impact

(e.g., Wheeler et al. '75,

Tauris & Takens '98, Liu et al. '15)

• SN Natal Kick

(e.g., Shklovskii '70, Janka '16)

 $v_{\rm dis} \simeq v_{2,{\rm orb}}^{{\rm pre-SN}} = \frac{M_1}{M_1 + M2} \sqrt{\frac{G(M_1 + M2)}{a}}$ Most binaries produce a slow "walkaway" star

SN natal kick

Observationally: $v_{\text{pulsar}} \gg v_{\text{OB}-\text{stars}}$

Physically: v emission and/or ejecta anisotropies

Credits: Ott, C. D., Drasco, S.

SN natal kick

Observationally: $v_{\text{pulsar}} \gg v_{\text{OB-stars}}$

Physically: v emission and/or ejecta anisotropies

Credits: Ott, C. D., Drasco, S.

BH kicks?

ANTON PANNEKOEK INSTITUTE

BH or NS?

· Single stars winds impact on the core structure

Keep the stars together

The most common evolution for massive binaries

· Constraints on BH kicks using runaway "widow"

The most massive (stellar) BHs

- (Pulsational) pair instability
 - The BH mass distribution
 - Induced eccentricity

Conclusions

Renzo et al., accepted, arXiv:1804.09164

ANTON PANNEKOEK INSTITUTE

BH or NS?

· Single stars winds impact on the core structure

Keep the stars together

The most common evolution for massive binaries

• Constraints on BH kicks using runaway "widow"

The most massive (stellar) BHs

• (Pulsational) pair instability

- The BH mass distribution
 - Induced eccentricity

Conclusions

Radiation dominated: $P_{\rm tot} \simeq P_{\rm rad}$

Woosley 2017,

Marchant, Renzo et al. arXiv:1810.13412,

Renzo, Farmer et al., to be submitted

Renzo, Farmer, et al., to be submitted

Renzo, Farmer, et al., to be submitted

4b. PISN: complete disruption

4a. Pulse with mass ejection

Renzo, Farmer, et al., to be submitted

Renzo, Farmer, et al., to be submitted

BH or NS?

· Single stars winds impact on the core structure

Keep the stars together

The most common evolution for massive binaries

• Constraints on BH kicks using runaway "widow"

The most massive (stellar) BHs

- (Pulsational) pair instability
 - The BH mass distribution
 - Induced eccentricity

Conclusions

Metallicity variations?

Other robustness tests:

- Spatial & temporal resolution
- Wind mass loss rate
- ¹²C(α, γ)¹⁶O rate

Farmer, Renzo, et al. (in prep.)

Takahashi 18

Woosley 17, 19

$\begin{array}{l} \max\{ \text{BH mass} \} \text{ robust as} \\ \text{function of } \textit{M}_{\rm CO} \end{array}$

(rate will vary with Z)

Metallicity variations?

CO core mass

Other robustness tests:

- Spatial & temporal resolution
- Wind mass loss rate
- ${}^{12}C(\alpha, \gamma){}^{16}O$ rate

Farmer, Renzo, et al. (in prep.)

Takahashi 18

Woosley 17, 19

max{BH mass} robust as function of $M_{\rm CO}$

(rate will vary with Z)

Chirp Mass Distribution

BH or NS?

· Single stars winds impact on the core structure

Keep the stars together

The most common evolution for massive binaries

• Constraints on BH kicks using runaway "widow"

The most massive (stellar) BHs

- (Pulsational) pair instability
 - The BH mass distribution
 - Induced eccentricity

Conclusions

Post common envelope PPI

Two PPI in a binary

$$\Delta \boldsymbol{e} = rac{\Delta M}{M_1 + M_2 - \Delta M}$$

Eccentricity distribution

BH or NS?

• Single stars winds impact on the core structure

Keep the stars together

The most common evolution for massive binaries

• Constraints on BH kicks using runaway "widow"

The most massive (stellar) BHs

- (Pulsational) pair instability
 - The BH mass distribution
 - Induced eccentricity

Conclusions

Take home points

- Uncertain wind mass loss rates influence the pre-SN core
 - \Rightarrow systematic bias in SN initial conditions and outcome?
- The vast majority of binaries are disrupted
 - \Rightarrow X-ray binaries and GW sources are exceptions
- Binarity leaves imprint on the ejected star

Simulations of Pulsational Pair Instability possible with MESA including self-consistently dynamical evolution

- can modify binary orbit and remnant spin
 ⇒ Signature on gravitational wave signals?
- determines BH masses below PISN gap

Take home points

- Uncertain wind mass loss rates influence the pre-SN core
 - \Rightarrow systematic bias in SN initial conditions and outcome?
- The vast majority of binaries are disrupted
 - \Rightarrow X-ray binaries and GW sources are exceptions
- Binarity leaves imprint on the ejected star

- "Widow" companions ejected constrain BH kicks
- Simulations of Pulsational Pair Instability possible with MESA including self-consistently dynamical evolution

- can modify binary orbit and remnant spin
 ⇒ Signature on gravitational wave signals?
- determines BH masses below PISN gap

Backup slides

Upper-limits in BH mass

_ffA

ANTON PANNEKOEK INSTITUTE

How many pulses?

as a function of He core mass

Number of pulses

ANTON PANNEKOEK INSTITUTE

One pulse = One mass ejection

Renzo, Farmer et al., to be submitted

When do the pulsate?

as a function of He core mass

Pulses timing

Pulses timing

How much mass is ejected per pulse? How much mass is ejected in total?

as a function of He core mass

Total mass lost

_fh

ANTON PANNEKOEK INSTITUTE

How fast are the ejected shells?

as a function of He core mass

Center of mass velocity

ANTON PANNEKOEK

Center of mass velocity

ANTON PANNEKOEK

Can the mass shell collide?

Woosley et al 07, Chen et al. 14, Woosley 17, Renzo, Farmer et al., to be submitted

Can the mass shells collide?

Spin down due to PPI ejecta

ANTON PANNEKOEK TUTE

Velocity distribution: Runaways

ANTON PANNEKOEK INSTITUTE

Velocity distribution: Walkaways

ANTON PANNEKOEK

0.04 all $Probability\!\times\!10^3/\,[{\rm km~s^{-1}}$ 0.5 0.03 0.4 0.02 \geq 7.5 M_{\odot} 0.3 0.01 0.2 0.00 $15\,M_{\odot}$ 30 50 60 70 400.1 0.0 10 20 30 50 60 70 40 $v_{\rm dis}$ [km s⁻¹]

Take home points:

- Walkaways outnumber the runaways by \sim 10×
- Binaries barely produce $v_{\rm dis} \gtrsim 60 \, {\rm km \ s^{-1}}$
- All runaways from binaries are post-interaction objects Renzo *et al.*, accepted, arXiv:1804.09164

Velocity distribution: Walkaways

- Binaries barely produce $v_{
 m dis}\gtrsim 60\,{
 m km~s^{-1}}$
- All runaways from binaries are post-interaction objects Renzo *et al.*, accepted, arXiv:1804.09164

