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Massive runaways stars: Probes for
stellar physics and dynamics

Standing blocks: – stand
– look
– welcome (open gesture)
– talk
say why you like things to convey enthiusiasm “I like massive stars
because I like things that explode and where a lot of physics matters”
Hi everyone, today I would like to talk to YOU about Massive runaway
stars, and on my title slide here I have an example. By massive star I
mean stars that will collapse at the end of their evolution, and this here
is zeta ophiuchi, which is a 20Msun star, so definitely we predict that it
will form either a NS or a BH at the end of the evolution. Runaway stars
are stars that are moving *fast*, and I will be more precise in a second.
Here we see that this star is moving fast because its wind forms a bow
shock when running in the interstellar material: this means that the
velocity of the star is larger than the local speed of sound in the ISM.

https://staff.fnwi.uva.nl/m.renzo/
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Why are massive stars important?

but before going into the runaway: Why should you care about mas-
sive stars? Massive stars are important for a variety of subfield of
astrophysics because they have many way to interact with their envi-
ronment and modify it. For example, they synthesize elements all the
way to iron in their core, and although the heaviest elements will end
up in the compact object they form at the end of their evolution, the
lighter alpha-elements are released in the galaxy and drive the chemi-
cal evolution: THE OXYGEN WE BREATH AS BEEN SYNTHESIZED
IN MASSIVE STARS.
They are powerful engines that stir the gas with their winds driving
further star formation, but they can also sweep away the gas when
they explode damping star formation: MASSIVE STARS ARE THE
MAIN REGULATORS OF STAR FORMATION.
Their final collapse, at least sometimes leads to a SN explosion and
forms a NS or BH, making massive stars the progenitors of the com-
pact objects we can see in X-rays, radio but also gravitational waves.
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∼70% of O type stars are
in close binaries

(e.g., Mason et al. ’09, Sana & Evans ’11,
Sana et al. ’12, Kiminki & Kobulnicky ’12,
Kobulnicky et al. ’14, Almeida et al. ’16)

Why are massive stars important?
Nucleosynthesis &
Chemical Evolution

Star Formation

Ionizing Radiation

Supernovae

GW Astronomy20
19

-1
0-

05

Why are massive stars important?

but before going into the runaway: Why should you care about mas-
sive stars? Massive stars are important for a variety of subfield of
astrophysics because they have many way to interact with their envi-
ronment and modify it. For example, they synthesize elements all the
way to iron in their core, and although the heaviest elements will end
up in the compact object they form at the end of their evolution, the
lighter alpha-elements are released in the galaxy and drive the chemi-
cal evolution: THE OXYGEN WE BREATH AS BEEN SYNTHESIZED
IN MASSIVE STARS.
They are powerful engines that stir the gas with their winds driving
further star formation, but they can also sweep away the gas when
they explode damping star formation: MASSIVE STARS ARE THE
MAIN REGULATORS OF STAR FORMATION.
Their final collapse, at least sometimes leads to a SN explosion
and forms a NS or BH, making massive stars the progenitors of the
compact objects we can see in X-rays, radio but also gravitational
waves.Virtually all massive stars are born in binary systems, and 7
out of 10 will interact (either exchange mass or merge) with their com-
panion. So when studying massive stars it is impossible to neglect
the influence that the presence of companions has on their life. This
can change the way they provide mechanical, radiative, and chemical
feedback. Some of these massive stars are, like ζ Ophiuchi in the
background, runaways, so they are by definition moving fast, and this
makes a larger volume of the galaxy available to the feedback. Em-
phasize that by moving around, runaway stars provide their feedback
in a larger region of space!
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Ok, after this very brief intro on massive stars, here is what I want to
walk you through:
* brief reminder on how we measure stellar velocities and give you a
formal definition of runaway
* introduce YOU to 2 mechanisms active in nature to give to these
stars their large velocity,
* naturally lead to the question of the relative efficiency of the two
mechanisms.
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So how do we measure stellar velocities?
* special features of the stars (e.g. the bow shock on my title slide),
but this requires the star to be rather nearby.
* component of the velocity ALONG OUR LINE OF SIGHT using
Doppler shifts of the spectral lines in the spectrum.
* If the distance to the star is known, we can also measure the angular
motion on the sky (so-called proper motion) and convert it into the
other two components of the velocity.
Only combining radial velocity and proper motions we can reconstruct
the THREEDIMENSIONAL velocity vector of a star.
We sometimes only have RV or pm, so not always easy to measure
the threedimensional velocity⇒ large uncertainties.
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Gaia is giving proper motions and distances

The European space agency satellite Gaia is providing distances and
proper motions of over a billion stars in the galaxy. This animation
shows a projection in the future of the kinematics of the galaxy from the
FIRST gaia data release. The second contains so many stars that it’s
hard to see anything on this, and why I prefer to show something that
is outdated. Gaia unfortunately is not an instrument targeting massive
stars, so although it will have a complete sample for G-magnitude .20,
its spectrograph is not providing radial velocities for massive stars.


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}
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Hipparcos velocity distribution for young (. 50 Myr) stars, Tetzlaff et al. 11,

see also Zwicky 57, Blaauw, 93, Gies & Bolton 86, Leonard 91, Renzo et al. 19a, 19b

v3D [km s−1]

Runaway stars
Tail of the velocity

distribution
Blaauw 61
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What is a runaway star?

Now, suppose you have the three-dimensional velocity vector for a
bunch of stars, if you plot the velocity distribution, typically you find a
bell curve with a thick tail. Adrian Blaauw in 1961 did this for each
spectral type, and defined runaway stars as those in the TAIL of the
velocity distribution. Now this requires having a full distribution and a
definition of what the tail is, so for practical purposes
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Fraction per type
O: ∼ 10− 20%

Be: ∼ 13%
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What is a runaway star?

remember to say “O type”, i.e. ∼ 20M� or more for people who don’t
know spectral types what is typically done is to ARBITRARILY draw
a line to give an effective definition of what “tail” is: everything on the
right is defined as a runaway star. Typical threshold (no physical mean-
ing) are 30 or 40 kms.I use 30kms. For O type stars about 10-30% of
stars are in the tail, and this is comparable to Be stars (and maybe
slightly more than all early B-type stars), although these fractions are
very uncertain because of the difficulty of measuring the 3 components
of the velocity of a star and defining what is the tail of the distribution.
Note that HYPERvelocity star, with velocities larger than the escape
velocity from the Galaxy have also been found, but these require dif-
ferent ejection mechanisms I will not touch upon.
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Two ways to produce fast massive stars

How do we accelerate a massive star to make it become a runaway?
There are two mechanisms active in nature:
* dynamical ejections from dense stellar environments
* supernova explosion in a binary system
both are active in nature but we do not know the relative fraction
and I will compare these two and show you how we can use the end
product, i.e. the runaway star, to study physical processes that matter
for these processes.
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Credits: C. Rodriguez

Example of dynamical interaction
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Example of dynamical interaction
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Fast runaway

Tighter and more massive binary
e.g., Fujii & Portegies-Zwart 11

Typical outcome of dynamical interactions
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Typical outcome of dynamical interactions
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from Oh & Kroupa 16,

see also, Poveda et al. 64, Fujii & Portegies-Zwart 11, Banerjee et al. 12, 14

Most ejections happen early
Before the first stellar

core-collapse

Very sensitive to initial conditions

Timing of ejection
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Cluster ejections
• Happen early on, before SNe
• Can produce faster stars
• Least massive thrown out
• Gaia hint: high efficiency

dynamical ejection

...Binaries are still important! but might
not leave signature

Summary of ejection mechanisms
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Extremely massive runaways in 30 Doradus

Summary of ejection mechanisms
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The big dipper
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Mizar & Alcor
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Most stars are in binaries
or multiple systems
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Credits: ESO, L. Calçada, M. Kornmesser, S.E. de Mink

Most common massive binary evolution
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Most common massive binary evolution
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The binary disruption shoots out the accretor
Spin up: Packet ’81, Cantiello et al. ’07, de Mink et al. ’13
Pollution: Blaauw ’93
Rejuvenation: Hellings ’83, Schneider et al. ’15

Spin up, pollution, and rejuvenation
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Ejecta impact
(Tauris & Takens 98, Liu et al. 15)

Loss of SN ejecta
(Blaauw ’61)

86+11
−22% of massive binaries are disrupted

Renzo et al. 19b, Kochanek et al. 19,

Eldridge et al. 11, De Donder et al. 97

What exactly disrupts the binary?
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SN Natal kick
(Shklovskii 70, Katz 75, Janka 13, 17)

Ejecta impact
(Tauris & Takens 98, Liu et al. 15)

Loss of SN ejecta
(Blaauw ’61)

86+11
−22% of massive binaries are disrupted

Renzo et al. 19b, Kochanek et al. 19,

Eldridge et al. 11, De Donder et al. 97

What exactly disrupts the binary?
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Observationally: vpulsar � vOB−stars

Credits: C. D. Ott, S. Drasco

SN natal kick

Physically: ν emission and/or ejecta anisotropies

20
19

-1
0-

05 Binary SN disruption
The majority of massive binary are disrupted

SN natal kick

What causes these natal kicks responsible for the binary disruption?
From an observational point of view we know they exists because we
see pulsars moving much faster than their parent O and early B type
stars. From a theoretical perspective, we think that these kicks are due
to asymmetries in the explosion dynamics, either in the neutrino flux
that drives the explosion (although this is presently a bit disfavored) or
because of the hydrodynamical instabilities in the explosion. For in-
stance, here you see an entropy rendering of the core of an exploding
15Msun star, but for simplicity you can think of the color as the density.
As you can see, this is not spherically symmetric: here you have a
big red clump, which if it is denser, can gravitationally pull the proto-
compact object (for up to a second) and as long as we have some
ejecta in the other direction to conserve momentum, we can acceler-
ate the proto compact object in the direction of the densest ejecta.
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stars. From a theoretical perspective, we think that these kicks are due
to asymmetries in the explosion dynamics, either in the neutrino flux
that drives the explosion (although this is presently a bit disfavored) or
because of the hydrodynamical instabilities in the explosion. For in-
stance, here you see an entropy rendering of the core of an exploding
15Msun star, but for simplicity you can think of the color as the density.
As you can see, this is not spherically symmetric: here you have a
big red clump, which if it is denser, can gravitationally pull the proto-
compact object (for up to a second) and as long as we have some
ejecta in the other direction to conserve momentum, we can acceler-
ate the proto compact object in the direction of the densest ejecta.



Anton Pannekoek
Institute

Do BHs receive kicks?

NO
⇒ most remain together with their

widowed companion

YES
⇒ most are single and we can’t see

them...

23 / 47

Do BHs receive kicks?

NO
⇒ most remain together with their

widowed companion

YES
⇒ most are single and we can’t see

them...

20
19

-1
0-

05 Binary SN disruption
The majority of massive binary are disrupted

Do BHs receive kicks?



Anton Pannekoek
Institute

Do BHs receive kicks?

NO
⇒ most remain together with their

widowed companion

YES
⇒ most are single and we can’t see

them...

23 / 47

...but we can see the
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SN Natal kick
(Shklovskii 70, Katz 75, Janka 13, 17)

vdis ' vorb
2

before the SN

86+11
−22% of massive binaries are disrupted

Renzo et al. 19b, Kochanek et al. 19,

Eldridge et al. 11, De Donder et al. 97
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Velocity distribution: Runaways
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Velocity distribution: Runaways
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Velocity distribution: Runaways

The first thing I want to draw your attention on is of course the velocity
distribution of ejected widowed stars. Here you see the tail of the dis-
tribution above 30km/s (the typical threshold to define runaways). The
three colors correspond to three lower mass cuts. The main thing to
notice here is that *BINARIES HAVE A VERY HARD TIME PRODUC-
ING MASSIVE RUNAWAYS FASTER THAN 60kms*.
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Take home points:

• Walkaways outnumber the runaways by ∼ 10×
• Binaries barely produce fast runaways

• All runaways from binaries are post-interaction objects
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Under-production of runaways because

mass transfer widens the binaries
and makes the secondary more massive

Velocity distribution: Walkaways
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Velocity distribution: Walkaways

Take home points:

• Walkaways outnumber the runaways by ∼ 10×
• Binaries barely produce fast runaways

• All runaways from binaries are post-interaction objects
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Runaway X-ray binaries

Missing runaway “problem”?
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Post-SN velocity of surviving binaries
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BH kick = NS kick

Renzo et al. 19b

#
sy

st
em

s

NS + Main sequence BH + Main sequence

Velocity respect to the pre-explosion binary center of mass

Post-SN velocity of surviving binaries
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Cluster ejections
• Happen before SNe
• Can produce high v
• Least massive thrown out
• Gaia hint: high efficiency

...Binaries are still important! but might
not leave signature

Binary SN disruption
• Most binaries are disrupted
• Determined by SN kick
• Ejects accretor
• v ' vorb

2 typically slow
• Leaves binary signature

spin up, pollution, rejuvenation

Summary of ejection mechanisms

20
19

-1
0-

05 Missing runaway “problem”?

Summary of ejection mechanisms



Anton Pannekoek
Institute

Summary of ejection mechanisms

33 / 47

Cluster ejections
• Happen before SNe
• Can produce high v
• Least massive thrown out
• Gaia hint: high efficiency

...Binaries are still important! but might
not leave signature

Binary SN disruption
• Most binaries are disrupted
• Determined by SN kick
• Ejects accretor
• v ' vorb

2 typically slow
• Leaves binary signature

spin up, pollution, rejuvenation

Relative efficiency ?

∼ 2
3 of runaways from binaries

Hoogerwerf et al. 01

Summary of ejection mechanisms

20
19

-1
0-

05 Missing runaway “problem”?

Summary of ejection mechanisms



Anton Pannekoek
Institute

O type stars runaway fraction
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# runaways
# all stars

'
Observational claims:

∼ 10%
∼ 2

3 from binaries
Hoogerwerf et al. 01

Theoretical consensus from
binaries:

0.5+2.1
−0.5%

Renzo et al. 19b, De Donder et al. 97, Eldridge et al. 11,

Kochanek et al. 19
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O type stars runaway fraction

Emphasize that numerator is regardless of ejection mechanism
Note the metallicity dependence of the theoretical runaway fraction If
from the population synthesis theory side we are correct, than this
discrepancy might be telling us that we are doing something wrong
with the orbital evolution of the binaries, and we are predicting that we
widen too much during RLOF (or maybe common envelope evolution
happens more often?).
However, this is not necessarily a problem since: Jilinski et al. could
not reproduce the result of Hoogerwerfer 01, and Gaia is suggesting
a higher than previously thought dyamical ejection efficiency. This is
a problem only if the majority of runaways come from binaries. More-
over, as you can see from the wide range claimed by observers, there
is ambiguity in the definition of runaway: what minimum velocity do
we require? In what reference frame are we measuring that veloc-
ity? The answer to these questions can change the observed fraction
quite a lot. So this potential problem will need to be revisited when the
complete Gaia dataset will be out.
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# runaways
# all stars

'
Observational claims:

∼ 10%
∼ 2

3 from binaries
Hoogerwerf et al. 01Jilinski et al. 10

Is it really a problem?
• Frame of reference to measure v
• Biases in favor of runaways
• Gaia hint: high efficiency dynamical

ejection

Theoretical consensus from
binaries:

0.5+2.1
−0.5%

Renzo et al. 19b, De Donder et al. 97, Eldridge et al. 11,

Kochanek et al. 19

O type stars runaway fraction

20
19

-1
0-

05 Missing runaway “problem”?

O type stars runaway fraction

Emphasize that numerator is regardless of ejection mechanism
Note the metallicity dependence of the theoretical runaway fraction If
from the population synthesis theory side we are correct, than this
discrepancy might be telling us that we are doing something wrong
with the orbital evolution of the binaries, and we are predicting that we
widen too much during RLOF (or maybe common envelope evolution
happens more often?).
However, this is not necessarily a problem since: Jilinski et al. could
not reproduce the result of Hoogerwerfer 01, and Gaia is suggesting
a higher than previously thought dyamical ejection efficiency. This is
a problem only if the majority of runaways come from binaries. More-
over, as you can see from the wide range claimed by observers, there
is ambiguity in the definition of runaway: what minimum velocity do
we require? In what reference frame are we measuring that veloc-
ity? The answer to these questions can change the observed fraction
quite a lot. So this potential problem will need to be revisited when the
complete Gaia dataset will be out.
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Cluster ejections
• Happen before SNe
• Can produce high v
• Least massive thrown out
• Gaia hint: high efficiency

...Binaries are still important! but might
not leave signature

Binary SN disruption
• Most binaries are disrupted
• Determined by SN kick
• Ejects accretor
• v ' vorb

2 typically slow
• Leaves binary signature

spin up, pollution, rejuvenation

Summary of ejection mechanisms

20
19

-1
0-

05 Conclusions

Summary of ejection mechanisms



Anton Pannekoek
Institute

Outline

Backup slides

37 / 47

Outline

Backup slides

20
19

-1
0-

05 Backup Slides

Outline



Anton Pannekoek
Institute

VFTS682: Concordant Picture?
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Large error bars compatible with no motion, but
best values fit with expectations for dynamical ejection

Renzo et al. 19a

VFTS682: Concordant Picture?
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Method: Population Synthesis

Izzard et al. ’04, ’06, ’09; de Mink et al. ’13
39 / 47

Fast⇒ Allows statistical tests of the inputs & assumptions

SN kicks Stellar
Winds

Initial
Distributions

Evolution
(binary c)

Population of
disrupted
binaries

RLOF &
Common
Envelope Tidal

Interactions

Mass
Transfer

Method: Population Synthesis

Izzard et al. ’04, ’06, ’09; de Mink et al. ’13
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Maxwellian σvkick = 265 km s−1 + Fallback rescaling
(from Fryer et al. ’12)

Hobbs et al. ’05
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Star forming region velocity dispersion
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Star forming region velocity dispersion
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Velocity distribution log-scale
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Velocity post-main sequence stars
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pre-CC mass distribution

0 10 20 30 40 50
Mpre−CC [M�]

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Pr
ob

ab
ili

ty
×

10
4

MCC

Mdis

0.0
0.2
0.4
0.6
0.8
1.0

C
um

ul
at

iv
e

44 / 47Renzo et al. 19b

pre-CC mass distribution
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pre-CC separation distribution
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Mass-velocity varying the natal kick
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Mass-velocity varying the natal kick
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“Distance traveled”
(No potential well)Renzo et al. 19b
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