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This might be on the low energy side for this group. There is a SN and | will connect to
github.com/mathreno0 S BH formation and long-GRBs at the end hopefully. | want to talk about some aspects of
a paper that was recently accepted, where we studied binary interactions, but focusing on
the accretor star, the underdog that will be widowed at the death of the companion
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https://arxiv.org/abs/2107.10933
https://github.com/mathren90/zeta_oph

Why care about the accretor?
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Why care about the accretor?

I—Why care about the accretor?

Binary:

50 — 70% of massive stars are in interacting binaries, the majority will go through stable
mass transfer, meaning 25 — 35% of massive stars are accretors. Need to understand them
for GW progenitors. Also, those are relatively easy to see while stripped stars are elusive.
stellar populations:

~10% of accretors shot out transients:

~ 14% of type Il SNe come from accretors, important for long-GRB



Most common massive binary evolution path: stable case B RLOF

Most common massive binary evolution path: stable case B RLOF

Credits: ESO, L. Calgada, M. Kornmesser, S.E. de Mink
L—Most common massive binary evolution path: stable case B

RLOF
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Spin up, pollution, and rejuvenation of the second star
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quantify ~ 10 — 12% of field O type stars are accretors but a tiny fraction can be runaway.

Need better models of accretor stars!
The accretor is modified by the

interaction

Spin up: Packet '81, Cantiello et al. ‘07, de Mink et al. '13
Pollution: Blaauw '93
Rejuvenation: Hellings '83, Schneider et al. '15
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The runaway ¢ Ophiuchi Is the nearest C
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¢ Ophiuchi is the nearest O type star to Earth

It is also a runaway star, spins extremely fast, and is well characterized observationally.
Up to 10% of single field stars, virtually all the OB companions to BHs, might be have a
similar past to this particular star.

e.g., Neuhauser et



The runaway ¢ Ophiuchi is the nearest O

Many observational constraints!
e d>~107+4pc

M ~20M,

e 20km s < vgys < 50kms™!

* vsin(i) = 350km s~!

* (Tefr, L) position

« Z < Zs, *He- and '“N-rich,
normal '>C and 60

M X Weak wind problem:
|| Mobs| =~ 10788 < [Mn| ~ 1070 Meyr~']

e.g., Neuhduser et
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¢ Ophiuchi is the nearest O type star to Earth
It is also a runaway star, spins extremely fast, and is well characterized observationally.

Up to 10% of single field stars, virtually all the OB companions to BHs, might be have a
similar past to this particular star.



¢ Oph is a “widowed” star: we can trace it back to a neutron star
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A nearby recent supernova that ejected the runaway star
¢ Oph, the pulsar PSR B1706-16, and “°Fe found on Earth
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SN explosion ~1.78 + 0.21 Myr ago
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Neuh&user et al. 19, see also van Rensbergen et al. 96, Hoogerwerf et al. 01, Lux et al. 20
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‘—z; Oph is a “widowed” star: we can trace it back to a neutron
star

£ Oph is a “widowed" star: we can trace it back to a neutron star
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Self-consistent &=/ model

MESA
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- MESA
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P = 100 days
Z = 0.01




Hertzsprung-Russel diagram of both stars: the donor
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Hertzsprung-Russel diagram of both stars: the donor & the accretor
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I—Hertzsprung-RusseI diagram of both stars: the donor & the
accretor

single non-rotating stars for reference in the background.
One dot each 50 years Note the different scales on the two panels.

Hertzsprung-Russel diagram of both stars: the donor & the accretor




“Widowed” stars

14N as a tracer for composition




Composition profile: comparison with rotating single stars

L_“Widowed” stars o
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L_14N as a tracer for composition ‘
W/ Werit = 0.2
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Composition profile: comparison with rotating single stars
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Composition profile: comparison with rotating single

L_“Widowed” stars

Composition profile: comparison with rotating single stars
L_14N as a tracer for composition

W/ Werit = 02 W/ Werit = 0.3 W/ Werit = 04 _w/Werie = 0.5 binary accretor L_Composition profile: comparison with rotating single stars
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Composition profile: comparison with rotating
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“Widowed” stars

Rotation




Surface rotation rate 5 L_“Widowed” stars
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Surface rotation rate

L “Widowed” stars
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e but overestimating by ~ 100x
wind mass loss!

e Decreasing the wind yields

W/ Werig > 1
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Internal rotational profile: single stars
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Internal rotational profile: single stars
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L_Rotation
L Internal rotational profile: single stars

Let me start by showing a normal, mildly rotating single star. Here you see the rotational
frequency omega, as a function of mass coordinate, the core is on the left and the surface
on the right. As the star evolves, the surface spins down due to wind mass loss, and the
core contracts and tries to spin up.



Internal rotational profile: single stars
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Internal rotational profile: single stars

L—“Widowed" stars
L_Rotation
L Internal rotational profile: single stars g =

Of course, the faster you spin initially, the more angular momentum there is and can be
retained at the end of the evolution, and the details of its distribution depend on angular
momentum transport mechanisms which are highly debated still.



Internal rotational profile: accretor
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Internal rotational profile: accretor

L_“Widowed” stars
L_Rotation
L Internal rotational profile: accretor

In this last panel instead I'm going to show you an accretor in a binary. All the gray area

corresponds to matter that is accreted during the mass transfer. As you can see, the

morphology here is quite different:
« initially the star is basically non-rotating

+ during mass transfer, first the surface spins up rapidly, and then angular momentum
is transported inwards until rigid rotation is achieved (in this particular model)

« since this happens later in the evolution, the core now doesn’t have much time left to
give back angular momentum to the envelope and spin down, and as it contracts and
evolves this leads to a much faster spinning core at the end of the main sequence.



Generalization to BBH progenitors
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Accretion spin-up occurs for BH progenitors too
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The 2" BH might be fast spinning
even without tidal interactions
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L_Generalization to BBH progenitors

L Accretion spin-up occurs for BH progenitors too

Accretion spin-up occurs for BH progenitors too




Conclusions




Take home points.

Take home points L-Conclusions

L Take home points
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Both stars are modified by binary interactions

Massive stars are predominantly born in multiple systems

Binary interactions modify both stars

Most binaries are broken because of a SN kick

The mass distribution of accretors might reveal BH kicks

The velocity distribution says something about the orbital evolution, but hard to find

Detail modeling reveals interesting features in the rotational profile

« Accretors and “widowed” stars are common

» We can “calibrate” models of accretors on the nearest O-type star

Standard assumptions reproduce reasonably ¢ Ophiuchi

“N and “He come from the former companion, not the core!

Rotation profile of “widowed” stars unlike single rotating stars
= implications for long-GRBs and BH spins
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Spatial velocity & mass
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Spatial velocity & mass
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Mass transfer history: A or ~ 2 x 10* years
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L_Mass transfer history: Afgior ~ 2 x 10* years

most of the mass is transferred between A and C
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Hertzsprung-Russel diagram: accretor rotation
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I—Hertzsprung-RusseI diagram: accretor rotation




Hertzsprung-Russel diagram: helium surface abundance
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I—Hertzsprung-RusseI diagram: helium surface abundance




Effect of mixing processes in the accretor
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