

Probes for stellar physics and dynamics

Mathieu Renzo PhD in Amsterdam

Collaborators: E. Zapartas, Y. Götberg, S. E. de Mink, S. Justham, R. J. Farmer, R. G. Izzard, S. Toonen, D. J. Lennon, H. Sana, E. Laplace, S. N. Shore, ...

NASA, JPL-Caltech, Spitzer Space Telescope

Why are massive stars important?

Nucleosynthesis & Chemical Evolution

Star Formation

Ň

Ionizing Radiation

Supernovae

GW Astronomy

NASA, JPL-Caltech, Spitzer Space Telescope

Why are massive stars important?

Nucleosynthesis & Chemical Evolution

Star Formation

ŵ

Ionizing Radiation

Supernovae

GW Astronomy

NASA, JPL-Caltech, Spitzer Space Telescope

${\sim}70\%$ of O type stars are in close binaries

(e.g., Mason *et al.* '09, Sana & Evans '11, Sana *et al.* '12, Kiminki & Kobulnicky '12, Kobulnicky *et al.* '14, Almeida *et al.* '16)

\sim 10% of O type stars are runaways ($\nu\gtrsim30\,{\rm km~s^{-1}}$)

(e.g., Blaauw '61, Gies '87, Stone '91)

What is a runaway star?

from Tetzlaff et al. 11,

see also Zwicky 57, Blaauw 61, 93, Gies & Bolton 86, Leonard 91, Renzo et al. 18, submitted, arXiv:1804.09164

What is a runaway star?

from Tetzlaff et al. 11,

see also Zwicky 57, Blaauw 61, 93, Gies & Bolton 86, Leonard 91, Renzo et al. 18, submitted, arXiv:1804.09164

ANTON PANNEKOEK INSTITUTE

Dynamically ejected runaways

- Theory of N-body interactions
- Gaia DR2 reveals \gtrsim 100 M_{\odot} runaways from R136

Binary disruption

- The most common massive binary evolution path
- Velocity distribution of the "widowed" companions

Conclusions

Dynamically ejected runaways Theory of N-body interactions

• Gaia DR2 reveals \gtrsim 100 M_{\odot} runaways from R136

Binary disruption

- The most common massive binary evolution path
- Velocity distribution of the "widowed" companions

Conclusions

Cluster ejection

ANTON PANN

INSTITUTE

N-body interactions (typically) least massive thrown out. Binaries matter...

- Cross section $\propto a^2 \gg R_*^2$
- (Binding) Energy reservoir

Poveda et al., 1967

..but don't necessarily leave imprints!

Example of dynamical interaction

Credits: C. Rodriguez

××××

Result of dynamical interaction

Tighter and more massive binary

e.g., Fujii & Portegies-Zwart 11

Timing of ejection

Most ejections happen early Before the first stellar core-collapse

 $\label{eq:chaotic Dynamics} \begin{array}{l} \mbox{ black bound of Chaotic Dynamics} \\ \mbox{ sensitive to initial conditions} \end{array}$

from Oh & Kroupa 16, see also, e.g., Poveda et al. 64, Fujii & Portegies-Zwart 11, Banerjee et al. 12, 14

Dynamically ejected runaways

• Theory of N-body interactions

• Gaia DR2 reveals \gtrsim 100 M_{\odot} runaways from R136

Binary disruption

- The most common massive binary evolution path
- Velocity distribution of the "widowed" companions

Conclusions

The most massive runaways

ANTON PAN

INSTI

- Which stars remain in the cluster/are ejected?
 - \Rightarrow Connection to multiple stellar populations?
- How do clusters form?
 - \Rightarrow Monolithic collapse or multiple streams?
- How does early cluster dynamics proceed?
 ⇒ Formation of BBH progenitors?
- Can we use stars outside the cluster to probe stellar physics in the cluster?
 ⇒ No crowding issues
- Efficiency of dynamical ejections
 ⇒ What process dominates the runaway production?

ANTON PAN

INSTI

Potential things we can learn

- Which stars remain in the cluster/are ejected?
 - \Rightarrow Connection to multiple stellar populations?

How do clusters form?

- \Rightarrow Monolithic collapse or multiple streams?
- How does early cluster dynamics proceed?
 ⇒ Formation of BBH progenitors?
- Can we use stars outside the cluster to probe stellar physics in the cluster?
 ⇒ No crowding issues
- Efficiency of dynamical ejections
 What process dominates the runaway production?

ANTON PAN

INST

- Which stars remain in the cluster/are ejected?
 - \Rightarrow Connection to multiple stellar populations?
- How do clusters form?
 - \Rightarrow Monolithic collapse or multiple streams?
- How does early cluster dynamics proceed?
 ⇒ Formation of BBH progenitors?
- Can we use stars outside the cluster to probe stellar physics in the cluster?
 ⇒ No crowding issues
- Efficiency of dynamical ejections
 ⇒ What process dominates the runaway production?

ANTON PAN

- Which stars remain in the cluster/are ejected?
 - \Rightarrow Connection to multiple stellar populations?
- How do clusters form?
 - \Rightarrow Monolithic collapse or multiple streams?
- How does early cluster dynamics proceed?
 ⇒ Formation of BBH progenitors?
- Can we use stars outside the cluster to probe stellar physics in the cluster?
 - \Rightarrow No crowding issues
- Efficiency of dynamical ejections
 What process dominates the runaway production'

ANTON PAI

- Which stars remain in the cluster/are ejected?
 - \Rightarrow Connection to multiple stellar populations?
- How do clusters form?
 - \Rightarrow Monolithic collapse or multiple streams?
- How does early cluster dynamics proceed?
 ⇒ Formation of BBH progenitors?
- Can we use stars outside the cluster to probe stellar physics in the cluster?
 - \Rightarrow No crowding issues
- Efficiency of dynamical ejections
 - \Rightarrow What process dominates the runaway production?

Hints from DR2...

Dynamical ejection seems very efficient at ejecting massive stars

ANTON PANNEL

INSTITUTE

Drew et al. 18, Renzo et al. 18b, Lennon et al. 18

ANTON PANNEKOEK INSTITUTE

Dynamically ejected runaways

- Theory of N-body interactions
- Gaia DR2 reveals \gtrsim 100 M_{\odot} runaways from R136

Binary disruption

- The most common massive binary evolution path
- Velocity distribution of the "widowed" companions

Conclusions

Dynamically ejected runaways

• Theory of N-body interactions

• Gaia DR2 reveals \gtrsim 100 M_{\odot} runaways from R136

Binary disruption

The most common massive binary evolution path

Velocity distribution of the "widowed" companions

Conclusions

Binary disruption

Credits: ESO, L. Calçada, M. Kornmesser, S.E. de Mink

Spin up, pollution, and rejuvenation

ANTON PANNEKOEK INSTITUTE

The binary disruption shoots out the accretor

Spin up: Packet '81, Cantiello *et al.* '07, de Mink *et al.* '13 Pollution: Blaauw '93 Rejuvenation: Hellings '83, Schneider *et al.* '15

ě

What exactly disrupts the binary?

 86^{+11}_{-9} % of massive binaries are disrupted ^{ANTON PANNII}

Renzo et al. 18, arXiv:1804.09164

Unbinding Matter

(e.g., Blaauw '61)

Ejecta Impact

(e.g., Wheeler et al. '75,

Tauris & Takens '98, Liu et al. '15)

SN Natal Kick

(e.g., Shklovskii '70, Janka '16)

$$V_{
m dis} \simeq V_{2,
m orb}^{
m pre-SN} = rac{M_1}{M_1 + M2} \sqrt{rac{G(M_1 + M2)}{a}}$$

INSTITUTE

What exactly disrupts the binary?

 86^{+11}_{-9} % of massive binaries are disrupted

Renzo et al. 18, arXiv:1804.09164

 Unbinding Matter (e.g., Blaauw '61) Ejecta Impact (e.g., Wheeler et al. '75, Tauris & Takens '98, Liu et al. '15) SN Natal Kick (e.g., Shklovskii '70, Janka '16) $V_{\rm dis} \simeq V_{2,\rm orb}^{\rm pre-SN} = \frac{M_1}{M_1 + M_2} \sqrt{\frac{G(M_1 + M_2)}{a}}$

INSTITUTE

Dynamically ejected runaways

• Theory of N-body interactions

• Gaia DR2 reveals \gtrsim 100 M_{\odot} runaways from R136

Binary disruption

- The most common massive binary evolution path
- Velocity distribution of the "widowed" companions

Conclusions

Velocity distribution: Runaways

Velocity distribution: Walkaways

ANTON PANNEKOEK

INSTITUTE

Take home points:

- Walkaways outnumber the runaways by \sim 10×
- Binaries barely produce $v_{\rm dis}\gtrsim 60\,{\rm km~s^{-1}}$
- All runaways from binaries are post-interaction objects Renzo *et al.*, submitted, arXiv:1804.09164

×Ň

Runaway fraction for O-type too low!

Physical Assumptions	Parameter	value	\mathcal{D} [%]	f_{15}^{RW} [%]	f_{15}^{WA} [%]
Fiducial population		see Sec. 2	86	0.5	10.1
Mass transfer efficiency	$\beta_{ m RLOF}$	0	86	0.3	1.5
		0.5	87	1.2	8.6
		1	87	0.7	14.7
Angular momentum loss	γrlof	$\gamma_{ m disk}$	85	0.2	7.3
		1	86	0.6	9.9
Common envelope efficiency	$\alpha_{\rm CE}$	0.1	86	0.5	10.1
		10	84	0.5	10.0
Mass ratio for case A merger	$q_{ m crit, A}$	0.80	86	0.5	10.2
		0.25	86	0.6	9.4
Mass ratio for case B merger	<i>q</i> crit, B	1.0	89	0.0	5.0
		0.0	85	0.6	10.1
Natal kick velocity	$\sigma_{ m kick}$	0	16	-	0.0
		300	87	0.6	10.3
		1000	91	1.2	11.2
Natal kick amplitude	$(\sigma_{\rm kick}, f_b)$	(100, 0)	84	0.3	8.7
Double maxwellian with $\sigma_{\rm kick}$	$= 30 \text{km} \text{s}^{-1}$	for $M_{\rm NS} \le 1.35$	65	0.5	4.9
Pestricted kick directions		$\alpha < 10 \deg$	87	0.6	10.3
Resultied Kick directions		$\frac{\pi}{2} - \alpha < 45 \deg$	86	0.5	10.0
Fallback fraction	f_b	0	97	1.5	12.1
		0.0002	77	2.6	7.7
Metallicity	Z	0.0047	84	1.2	10.3
		0.03	88	0.5	10.0

Robust outcome (more runaways at low Z)

ANTON PANNER

INSTITUTE

 $f_{15}^{\rm RW} \stackrel{\rm def}{=} \frac{\# \text{ runaways}}{\# \text{ stars}}$

Observed:

 $\mathit{f_{15}^{RW}}\simeq10-20\%$

$\sim\!\frac{2}{3}$ of runaways from binaries

Hoogerwerf et al. '01

(but see also Jilinski et al. '10)

Renzo et al., arXiv:1804.09164 22/26

Dynamically ejected runaways

• Theory of N-body interactions

• Gaia DR2 reveals \gtrsim 100 M_{\odot} runaways from R136

Binary disruption

- The most common massive binary evolution path
- Velocity distribution of the "widowed" companions

Conclusions

INSTIT

Dynamical Interactions

- Happen early on, before SNe
- Can produce faster stars
- (Typically) least massive thrown out

...Binaries are still important! but might not leave signature

Binary SN disruption

- Ejects initially less massive star
- Requires SN kick
- Final $v \simeq v_2^{\text{orb}}$
- Leaves binary signature (fast rotation, He/N enhancement, lower apparent age)

- **Dynamical ejections**
- Produce on average faster runaways
- Gaia DR2 hints at large efficiency of dynamical ejections
- Isolated star formation not required for VFTS16/72/682
 - \Rightarrow Massive binary formed? Could evolve to binary BH?
- R136 extremely active in ejecting stars in its first 2 Myr ⇒ Implications for cluster formation?

Binary Disruption

- The vast majority of binaries are disrupted
 ⇒ X-ray binaries and GW sources are exceptions
- Over-produces "Walkaways"
 - \Rightarrow Most runaways from dynamical ejections?
 - \Rightarrow Biased pre-*Gaia* samples?
- · Binarity leaves imprint on the ejected star
- Can be used to constrain BH kicks (statistically)

Thank you!

ANTON PANNEKOEK INSTITUTE

Backup slides

VFTS682: Concordant Picture?

ANTON PANNEKOEK

Large error bars compatible with no motion, but best values fit with expectations for dynamical ejection

Initial Distributions

Star forming region velocity dispersion

Ň

INSTITUTE

Velocity distribution with lifetimes

Velocity distribution log-scale

Velocity distribution bound binaries

Velocity post-main sequence stars

Ň

INSTITUTE

pre-CC mass distribution

pre-CC separation distribution

INSTITUTE

Mass-velocity varying the natal kick

SN natal kick

Observationally: $v_{\text{pulsar}} \gg v_{\text{OB-stars}}$

Physically: v emission and/or ejecta anisotropies

Credits: Ott, C. D., Drasco, S.

(potential) Physics lessons...

... from disrupted binaries

ANTON PANNEKOEK INSTITUTE

BH kicks Binary evolution

Do BH receive natal kicks?

Spatial distribution of X-ray binaries

(e.g., Repetto et al. '12,'15,'16, Mandel '16)

Massive (and WR) runaways

(Dray et al. '05)

Disrupted binaries are "failed" GW sources!

(potential) Physics lessons...

... from disrupted binaries

ANTON PANNEKOEK INSTITUTE

BH kicks Binary evolution

Constraints on binary physics

- Orbital evolution \Leftrightarrow pre-SN period
- Mass transfer efficiency \Leftrightarrow pre-SN M_2
- Angular momentum loss ⇔ isotropic re-emission, circumbinary disk, etc.

Analytic calculations of orbital evolution

ANTON PANNEKOEK INSTITUTE

Assuming constant β_{RLOF} , γ_{RLOF} :

 $\beta_{\text{RLOF}} \stackrel{\text{def}}{=} \dot{M}_{\text{acc}} / \dot{M}_{\text{don}}$ $h \stackrel{\text{def}}{=} \gamma_{\text{RLOF}} \frac{J_{\text{orb}}}{M_1 + M_2}$

In fiducial simulation β_{RLOF} depends on τ_{KH} of accretor