

Pulsational Pair Instability

or why these black holes can't come from stars

Mathieu Renzo

Radiation pressure dominated: $P_{\rm tot} \simeq P_{\rm rad}$

 $M_{\rm He} \gtrsim 32 \, M_{\odot}$

0. Evolved Massive He core

Pair-instability SNe are the best understood supernovae

see Fowler & Hoyle 1964, Rakavy & Shaviv 1967, Barkat et al. 1968, Fraley 1968, Glatzel et al. 1985, Woosley et al. 2002,

2007, Langer et al. 2012, Chatzopoulos et al. 2012, 2013, Yoshida et al. 2016, Woosley 2017, 2019, Leung et al. 2019, etc...

He cores computed with MESA

Collapse on thermal timescale

$$au \propto rac{GM_{
m He}^2}{RL_
u}$$
 , $L_
u \gg L$

(Fraley 68)

The pair-instability BH mass gap

The distribution of stellar BH masses

The distribution of stellar BH masses

Chirp mass distribution – weighted by LIGO's sensitivity

How robust is this prediction?

Metallicity? Small effect

Treatment of time-dependent convection? Not the edge

Winds, mixing, v physics? Also small effects

Can rotation move the gap? Barely...

Rotation can stabilize the core,

but sufficient rotation only for very extreme assumptions...

"realistic" core-envelope coupling

How robust is this prediction?

Does binarity move the gap?

Can isolated binary evolution "pollute" the gap?

With unlimited accretion, some binary BHs can enter the gap...

Can isolated binary evolution "pollute" the gap?

... but those entering the gap don't merge within 13.7 Gyr

Can isolated binary evolution "pollute" the gap?

... but those entering the gap don't merge within 13.7 Gyr

van Son et al., incl. MR, 2020

The only known large uncertainty

Nuclear reaction rates

The most important reaction ${}^{12}C(\alpha, \gamma){}^{16}O$ reaction rate

Change in C/O ratio \Rightarrow different C-shell behavior

Possible ways to bridge the gap

The speculative stellar merger scenario

Population synthesis assumptions not quite backed up by detailed models

Mass loss during merger?

· Loss of envelope at core-collapse?

see Nadhezin 1980, Lovegrove & Woosley 2013

Need dynamics to pair with 2nd BH
 ↓
 Requires nuclear duster and/or AGN disk?

Beyond standard model physics

Effectively change the cooling during He core burning Changes C/O ratio, ρ -structure, decrease P_{rad}/P_{tot}

Croon et al. 20a, see also Croon et al. 20b, Sakstein et al. 20

PISN are the theoretically best understood SNe

although observationally elusive

- PISN BH mass gap very robust prediction
- BH formation after PPI poorly understood
- Binary effect seem small
- Populating the gap requires non-stellar (2nd gen. +) BHs or new physics

Backup slides

The ${}^{12}C(\alpha, \gamma){}^{16}O$ ends He core burning

More ${}^{12}\mathrm{C} \Rightarrow \mathrm{C}$ shell burning delays ${}^{16}\mathrm{O}$ ignition to higher ρ

Convection during the pulses quenches the PPI mass loss

