

(Pulsational) Pair Instability SN

Mathieu Renzo Collaborators: S. E. de Mink, Y. Götberg, E. Zapartas, R. Farmer, P. Marchant, B. Paxton

BBH-merger EM counterpart \Rightarrow mass loss needs to be close to 2^{nd} core-collapse

Observational evidence

Flash spectroscopy of SNe

- e.g., Khazov et al. 2016

narrow-lined SNe (Ibn & IIn)

e.g., Filippenko 1997,

Smith 2016

CSM-powered SLSNe

e.g., Chevalier & Fransson 1994,

Smith 2007

SN-impostors

- e.g., Smith et al. 2008

BBH-merger EM counterpart \Rightarrow mass loss needs to be close to 2^{nd} core-collapse

Observational evidence

Theoretical ideas

- Flash spectroscopy of SNe
 - e.g., Khazov et al. 2016
- narrow-lined SNe (Ibn & IIn)
 - e.g., Filippenko 1997,

Smith 2016

- CSM-powered SLSNe
 - e.g., Chevalier & Fransson 1994,

Smith 2007

SN-impostors

- Wave driven mass loss
 - e.g., Shiode & Quataert 2014,

Fuller et al. 2017

- Pulsational pair instability +
 Core collapse
 - e.g., Barkat et al. 1967,

Chatzopoulos & Wheeler 2012,

Woosley 2017

e.g., Smith et al. 2008

Different behaviors with M_{ZAMS} and/or M_{He} IMF $(M) \propto M^{-2.3}$

cf. Woosley 2017

 $M_{\rm He}$ governs the fate, determines $M_{\rm BH}$

Evolution during (P)PISN

 $M_{
m He}\gtrsim 32\,M_\odot$

(Woosley 2017)

4b. PISN: complete disruption

4a. Pulse with mass ejection

PPISN mass loss history

Discussion

ANTON PANNEKOEK INSTITUTE

Can PPISN provide the mass aroung the BBH?

Pros

- ✓ Timed shortly before BH formation
- ✓ Sufficient amount of mass;
- \checkmark Can increase eccentricity \Rightarrow decrease $\tau_{\rm GW}$;

- Cons
- X Can possibly unbind the binary;
- × $v_{\rm ejecta} \gtrsim 10^3 10^4 \, {\rm km \ s^{-1}};$
- **×** Still have to survive τ_{GW} .

× ...

Discussion

ANTON PANNEKOEK INSTITUTE

Can PPISN provide the mass aroung the BBH?

Pros

- ✓ Timed shortly before BH formation
- ✓ Sufficient amount of mass;
- ✓ Can increase eccentricity ⇒ decrease τ_{GW} ;

- X Can possibly unbind the binary;
- × $v_{\rm ejecta} \gtrsim 10^3 10^4 \, {\rm km \ s^{-1}};$
- **×** Still have to survive τ_{GW} .

Bonus:

Χ...

- Naturally produces BHs of \sim 30 M_{\odot}
- Can modify the BH mass function (2nd mass gap)

Correlation between M_{BH} and EM signal?