The stars that won't die: pulsational pair instability supernovae

M. Cantiello, Y.-F. Jiang, B. D. Metzger, E. C. Laplace, L. van Son, C. Xin

The theoretical picture

Pair-production happens in the interior⁺

⁺ can be off-center

Simulating the He core captures the important dynamics

H-rich envelope can be lost to:

- winds
- · binary interactions
- first pulse

Pair-instability SNe are the best understood supernovae

Radiation pressure dominated: $\ensuremath{\textit{P}_{\text{tot}}} \simeq \ensuremath{\textit{P}_{\text{rad}}}$

 $M_{
m He}\gtrsim 32\,M_\odot$

0. Evolved Massive He core

see Fowler & Hoyle 1964, Rakavy & Shaviv 1967, Barkat et al. 1968, Fraley 1968,

Glatzel et al. 1985, Woosley et al. 2002, 2007, Langer et al. 2007, Chatzopoulos et al. 2012, 2013, Yoshida et al. 2016,

Renzo, Farmer et al. 2020b

Woosley 2017, 2019, Leung et al. 2019, etc...

He cores computed with MESA

Collapse on thermal timescale

$$au \propto rac{GM_{
m He}^2}{RL_
u}$$
 , $L_
u \gg L$

(Fraley 68)

The pair-instability BH mass gap

The distribution of stellar BH masses

The distribution of stellar BH masses

How robust are these predictions?

Metallicity? Small effect

Metallicity shift

 $\Delta \max{\{M_{
m BH}\}} \sim 7\%$ over 2.5 orders of magnitude

Comparable or smaller effects: mixing, resolution, winds, nuclear reaction network size, etc..

EM signatures of PPISN

What is a pulse? Can we count them?

Not everything that happens inside the star influences the surface...

...the internal structure can readjust

1st pulse definition: thermonuclear ignition

- Typical fuel $^{16}\mathrm{O}$ but can be $^{28}\mathrm{Si}$
- Possible neutrino signal

Wright 2017, Leung et al. 2020

Hard to count the maxima (and maybe not informative?)

2nd pulse definition: radial expansion

8

3^{rd} pulse definition: dynamical mass ejection ($\Delta M_{pulse} \gtrsim 10^{-6} M_{\odot}$)

EM signatures of PPISN

When do the pulses occur?

Interpulse delays range from 0 $\lesssim t \lesssim \tau_{\rm KH}$

Many in the \sim month delay timescale

Larger $M_{\rm CO} \Rightarrow$ stronger explosions \Rightarrow larger departure from equilibrium \Rightarrow longer delay up to $\tau_{\rm KH}$

EM signatures of PPISN

Amount of mass loss

The amount of mass lost is a steep function of the core mass

From the He core!

- H-envelope gone to winds, binarity, or at 1st pulse
- · Winds not included
- $\Delta M_{\rm pulse}$ large, but relevant for $M_{\rm BH}$ only for $M_{\rm CO}\gtrsim40~M_{\odot}$

EM signatures of PPISN

Ejecta velocity

Typical velocities $\langle v \rangle \simeq v_{\rm esc} \simeq 10^3 \, {\rm km \ s^{-1}}$

Connection to (some) SNIbn ?

Caveats: No radiative effects, assumes constant post-ejection velocity

Can shells collide with each other?

Woosley et al. 07, Chen et al. 14, Woosley 17, Renzo, Farmer et al. 2020b

Another possible observable: "Odd-even" effect in low Z stars

Nucleosynthesis without neutrons around \Rightarrow hard to make odd A elements

Summary of EM transients

Renzo, Farmer et al. 2020b

Filling the PISN mass gap

GW reveal a BH population in the gap

97.1
$$^{+1.7}_{-3.4}$$
% have $M_1 < 45 M_{\odot}$

16

Possible ways to fill the PISN mass gap

Possible ways to fill the PISN mass gap

Move the gap

• decrease by ${\sim}2.5\sigma$ the ${}^{12}{\rm C}(\alpha,\gamma){}^{16}{\rm O}$

Farmer et al. 20, Belczynski 20

Beyond standar model physics

Choplin et al. 17, Croonet al. 20a,b, Sakstein et al. 20,

Straight et al. 20, Ziegler et al. 20
Move the gap

• decrease by $\sim 2.5\sigma$ the ${}^{12}C(\alpha,\gamma){}^{16}O$

Farmer et al. 20, Belczynski 20

Beyond standar model physics

Choplin et al. 17, Croonet al. 20a,b, Sakstein et al. 20,

Straight et al. 20, Ziegler et al. 20

Avoid pair-instability

stellar merger scenario

see Spera & Mapelli 2019, di Carlo et al. 19, 20a, 20b, Renzo et al. 20c

- population III
- Quench winds

Farrell et al. 20, Kinugawa et al. 20

Belczynski et al. 20. Vink et al. 20

Move the gap

• decrease by $\sim 2.5\sigma$ the ${}^{12}C(\alpha,\gamma){}^{16}O$

Farmer et al. 20. Belczynski 20

van Son et al. 2020

Beyond standar model physics

Choplin et al. 17. Croonet al. 20a.b. Sakstein et al. 20.

Straight et al. 20. Ziegler et al. 20

Accretion:

- in proto-cluster Roupas & Kazanas 2019a.b
- PBHs before re-ionization de Luca et al. 2020
- in isolated binary •
- in halos Safarzadeh & Haiman 20

Avoid pair-instability

stellar merger scenario

see Spera & Mapelli 2019, di Carlo et al. 19, 20a, 20b, Renzo et al. 20c

- population III
- Quench winds

Farrell et al. 20, Kinugawa et al. 20

Belczynski et al. 20, Vink et al. 20

formation

pre-BH

pre-BH formation

post-BH formation

Move the gap	Avoid pair-instability
• decrease by ${\sim}2.5\sigma$ the ${ m ^{12}C}(lpha,\gamma){ m ^{16}O}$	 stellar merger scenario
Farmer et al. 20, Belczynski 20	see Spera & Mapelli 2019, di Carlo et al. 19, 20a, 20b, Renzo et al.
 Beyond standar model physics 	20c
Choplin <i>et al.</i> 17, Croon <i>et al.</i> 20a,b, Sakstein <i>et al.</i> 20,	• population III Farrell <i>et al.</i> 20, Kinugawa <i>et al.</i> 20
Straight et al. 20, Ziegler et al. 20	• Quench winds Belczynski et al. 20, Vink et al. 20
Accretion:	Multiple generations of BBH mergers
• in proto-cluster Roupas & Kazanas 2019a,b	• in clusters Fragione <i>et al.</i> 20, Liu & Lai 20
• PBHs before re-ionization de Luca et al. 2020	• in nuclear clusters Perna et al. 19
• in isolated binary van Son et al. 2020	in AGN disks
• in halos Safarzadeh & Haiman 20	McKernan et al. 12, Bartos et al. 17, Stone et al. 19

pre-BH formation

post-BH formation

Move the gap	Avoid pair-instability
- decrease by ${\sim}2.5\sigma$ the ${ m ^{12}C}(lpha,\gamma){ m ^{16}O}$	 stellar merger scenario
Farmer et al. 20, Belczynski 20	see Spera & Mapelli 2019, di Carlo et al. 19, 20a, 20b, Renzo et al.
 Beyond standar model physics 	20c
Choplin et al. 17, Croonet al. 20a,b, Sakstein et al. 20,	• population III Farrell <i>et al.</i> 20, Kinugawa <i>et al.</i> 20
Straight et al. 20, Ziegler et al. 20	• Quench winds Belczynski <i>et al.</i> 20, Vink <i>et al.</i> 20
Accretion:	Multiple generations of BBH mergers
• in proto-cluster Roupas & Kazanas 2019a,b	• in clusters Fragione <i>et al.</i> 20, Liu & Lai 20
• PBHs before re-ionization de Luca et al. 2020	• in nuclear clusters Perna et al. 19
• in isolated binary van Son et al. 2020	 in AGN disks
• in halos Safarzadeh & Haiman 20	McKernan et al. 12, Bartos et al. 17, Stone et al. 19

"Impostor" GW events: High eccentricity merger? Lensing?

Filling the PISN mass gap

The "stellar merger" scenario

Merge stars below the gap to get large envelope and small core

see Spera & Mapelli 2019, Di Carlo *et al.* 2020a,b, Kremer *et al.* 2020 see also issues in Renzo, Cantiello *et al.* 2020

The "stellar merger scenario"

 Make a star with a small core and oversized envelope to avoid PPISN

Collapse it to a BH in the gap

• Pair it in a GW source with dynamics

Four challenges of the "stellar merger scenario"

19

The "stellar merger" scenario

1st challenge: merger mass and angular momentum budget

Estimates of mass loss for stellar collisions: $\Delta M_{merger} \lesssim 10\%$

Lombardi et al. 02, see also Glebbeek et al. 13

Estimates of mass loss for stellar collisions: $\Delta M_{merger} \lesssim 10\%$

20

Lombardi et al. 02, see also Glebbeek et al. 13

Angular momentum distribution

Maeder & Meynet 2000

Possible issues

• Surface: Centrifugally driven mass loss

Heger et al. 00

• Core: Core-growth by mixing

de Mink et al. 09, de Mink & Mandel 16, Marchant et al. 16

↓ I will assume no rotation

The "stellar merger" scenario

Simplified MESA mergers

Very massive stars have very similar lifetimes

Z = 0.001, non – rotating 1.0of star 2" 0.7 0.9 0.6 0.8 nter 0.70.5 $q = M_2/M_1$ If the He core is not allowed to grow, 0.4 č⁵X ŏ the Where does the He of star 2 go? 0.3 0.4'Hydrogen left 0.2 0.3 0.10.2 0.1 50 100 150 $M_1 [M_\odot]$

Merger model from two stars

Merger model in two steps: (1) grow mass and (2) set composition

Renzo, Cantiello et al. 20

23

The "stellar merger" scenario

2nd challenge: Keeping the mass

Merger products are He-rich and blue \Rightarrow envelope instabilities?

Very massive stars are hardly stable

- + $\sim 10^5\, years$ in S Dor instability strip
- reach core-collapse as BSG

\Downarrow

· LBV eruptions, aided by He opacity?

Jiang et al. 18

Eddington ratio and Opacity structure

Renzo, Cantiello et al. 20

The estimated radiation-driven mass loss is not significant

$$\dot{M} = \frac{L - L_{\rm Edd}}{v_{\rm esc}^2}$$

 $L > L_{\rm Edd}$ only for few 100 years

(higher $Z \Rightarrow$ higher $\kappa \Rightarrow$ higher \dot{M})

The "stellar merger" scenario

3rd challenge: envelope fate at BH formation

Do BHs form via a failed, weak, or full blown SN explosion? (Work in progress)

Possible causes for mass ejection at BH formation:

• *v*-driven shocks

Nadhezin 80, Lovegrove & Woosley 14, Fernandez et al. 18

• Jets, (even without net rotation)

Gilkis & Soker 2014, Perna et al. 18, Quataert et al. 19

• (weak) fallback powered explosion

Ott et al. 18, Kuroda et al. 18, Chan et al. 20

The "stellar merger" scenario

4th challenge: forming a binary BH

Massive BHs are dynamically active: short merger time or cluster ejection

- $\tau_{merger} \simeq {\rm few} imes 10 \, {\rm Myr}$
- 6% of BH formed at Z < 0.002 have masses in the gap ($\lesssim 1\%$ at Z_{\odot})
- · depends also on initial cluster density

Massive BHs are dynamically active: short merger time or cluster ejection

- $\tau_{\rm merger} \simeq {\rm few} \times 10 \, {\rm Myr}$
- 6% of BH formed at Z < 0.002 have masses in the gap ($\lesssim 1\%$ at Z_{\odot})
- · depends also on initial cluster density

GW190521

 $M_1 = 85^{+21}_{-14} M_{\odot} \qquad M_2 = 66^{+17}_{-18} M_{\odot}$ both in the PISN gap \downarrow Stellar merger scenario twice **?** **Conclusions**

for the "stellar merger" scenario

The stellar merger scenario is very speculative

- Similar lifetimes of massive stars \Rightarrow where does the He go?
- If He mixed in the envelope \Rightarrow BSG with high L/L_{Edd}
- Estimated $\Delta \textit{M}_{radiation} \lesssim 1 \textit{ M}_{\odot}$ at Z = 0.0002

 \Rightarrow LBV-like eruption at very low *Z*?

Renzo, Cantiello, et al. 20, arXiv:2010.00705

Need better simulations of merger process and BH formation

Summary of EM transients

Renzo, Farmer et al. 2020b

Backup slides

⁵⁶Ni production

Farmer, Renzo et al. 2020b

Velocity profile at core-collapse after PPI

Farmer, Renzo et al. 2020b

Winds, mixing, ν physics? Also small effects

Winds, mixing, ν physics? Also small effects

Winds, mixing, v physics? Also small effects

Treatment of time-dependent convection? Not the edge

Convection during the pulses quenches the PPI mass loss

Can rotation move the gap? Barely...

Rotation \Rightarrow **bigger** $M_{\rm He}$ \Rightarrow can increase the rates

Chatzopoulos et al. 2012, 2013

Rotation stabilizes only for *very* extreme assumption:

- No core-envelope coupling
- · large initial rotation
- low Z (≃ no winds)

\Downarrow

only \sim 20% shift of instability \lesssim 4% for "realistic" coupling

The only known large uncertainty

Nuclear reaction rates

The $^{12}\mathrm{C}(\alpha,\gamma)^{16}\mathrm{O}$ ends He core burning

More ${}^{12}\mathrm{C} \Rightarrow \mathrm{C}$ shell burning delays ${}^{16}\mathrm{O}$ ignition to higher ρ

 $^{12}\mathrm{C}\left(\alpha,\gamma\right)^{16}\mathrm{O}$ reaction rate

Farmer, Renzo et al. 2020

The most important reaction ${}^{12}C(\alpha, \gamma){}^{16}O$ reaction rate

Change in C/O ratio \Rightarrow different C-shell behavior

GW can constrain nuclear rates with the gap...

... if other channels don't pollute it too much

Farmer, Renzo et al. 2020, see also Takahashi 2018, Farmer, Renzo et al. 2019

The most important reaction ${}^{12}C(\alpha, \gamma){}^{16}O$ reaction rate

Change in C/O ratio \Rightarrow different C-shell behavior

 $M_{
m BH}\simeq 85\,M_{\odot}$ requires decreasing rate by ${\sim}2.5\,\sigma$

GW can constrain nuclear rates with the gap...

... if other channels don't pollute it too much

Farmer, Renzo et al. 2020, see also Takahashi 2018, Farmer, Renzo et al. 2019

Possible ways to bridge the gap

Does binarity move the gap?

Can isolated binary evolution "pollute" the gap?

With unlimited accretion, some binary BHs can enter the gap...

Can isolated binary evolution "pollute" the gap?

... but those entering the gap don't merge within 13.7 Gyr

Can isolated binary evolution "pollute" the gap?

... but those entering the gap don't merge within 13.7 Gyr

van Son et al., incl. MR, 2020

Possible ways to bridge the gap

Beyond standard-model physics ?

Effectively change the cooling during He core burning

Photophilic axion: $m_a \ll \text{keV}, Z = 10^{-5}$

Other possibilities:

- · dark photons
- · other axions
- change G
- v magnetic moment
- · extra dimensions