

Pulsational Pair Instability

Mathieu Renzo Collaborators: R. Farmer, P. Marchant, S. E. de Mink, Y. Götberg, E. Zapartas, E. Laplace, S. Justham

Possible mass loss

ANTON PANNEKOEK INSTITUTE

Mass loss influences the life and fate of massive stars

Stellar Winds

Mauron & Josselin 11, Meynet et al. 14,

Smith 14, Renzo et al. 17

Binary Interactions

Kippenhahn & Weigert 67,

Podsiadlowski et al. 92, Götberg et al. 17, 18

Dynamical Instabilities

Smith 14, Rakavy & Shaviv 67,

Woosley 17, Fuller 17,

Marchant, Renzo et al. arXiv:1810.13412

Very roughly speaking

ANTON PANNEKOEK INSTITUTE

For each massive non-merging ⇒ One SNII and one stripped SN (IIb/Ib/Ic) binary

Eldridge et al. 11, 18, Zapartas et al. (incl. Renzo, M.) 17b, Zapartas et al. (incl. Renzo, M.) 18a, 18b to be subm.

Evolution through PPI

Ejecta kinematics & CSM structure

PPI effects on BH binary orbits

- The BH mass distribution
 - Induced eccentricity
- Post-pulsations BH spins

Conclusions

Radiation dominated: $P_{\rm tot} \simeq P_{\rm rad}$

 $M_{\rm He} \gtrsim 32 \, M_{\odot}$

Woosley 2017,

Marchant, Renzo et al. arXiv:1810.13412,

Renzo, Farmer et al., to be submitted

see also:

Barkat et al. 67,

Rakavy & Shaviv 67

Fraley 68

Woosley et al. 07

4b. PISN: complete disruption

4a. Pulse with mass ejection

Evolution through PPI

Ejecta kinematics & CSM structure

PPI effects on BH binary orbits

- The BH mass distribution
 - Induced eccentricity
- Post-pulsations BH spins

Conclusions

How many pulses?

• as a function of He core mass

Number of pulses

ANTON PANNEKOEK INSTITUTE

When do they pulsate?

• as a function of He core mass

Pulses timing

Pulses timing

S ANTON PANNEKOEK

How much mass is ejected per pulse? How much mass is ejected in total?

• as a function of He core mass

Total mass lost

INSTITUTE

ANTON PANNEKOEK

How fast are the ejected shells?

as a function of He core mass

Center of mass velocity

Center of mass velocity

Can the mass shell collide?

Woosley et al 07, Chen et al. 14, Woosley 17, Renzo, Farmer et al., to be submitted

Can the mass shells collide?

Evolution through PPI

Ejecta kinematics & CSM structure

PPI effects on BH binary orbits

- The BH mass distribution
 - Induced eccentricity
- Post-pulsations BH spins

Conclusions

Evolution through PPI

Ejecta kinematics & CSM structure

PPI effects on BH binary orbits

- The BH mass distribution
 - Induced eccentricity
- Post-pulsations BH spins

Conclusions

PPI in a binary

Two PPI in a binary

$$\Delta \boldsymbol{e} = rac{\Delta M}{M_1 + M_2 - \Delta M}$$

Eccentricity distribution

Evolution through PPI

Ejecta kinematics & CSM structure

PPI effects on BH binary orbits

- The BH mass distribution
 - Induced eccentricity
- Post-pulsations BH spins

Conclusions

Spin down due to PPI ejecta

ANTON PANNFKOEK TUTE

26/29

Evolution through PPI

Ejecta kinematics & CSM structure

PPI effects on BH binary orbits

- The BH mass distribution
 - Induced eccentricity
- Post-pulsations BH spins

Conclusions

ANTON PANNEKOE Institut

Simulations of Pulsational Pair Instability possible with MESA including self-consistently dynamical evolution

Pulsational Pair Instability:

- determines BH masses below 2nd gap
 ⇒ LIGO/Virgo O3 will probe this process
- can create (He-rich, "slow" moving) CSM
 ⇒ connection with SNIbn progenitors?
- can modify binary orbit (and remnant spin)
 - \Rightarrow Signature on gravitational wave signals?

Simulations of Pulsational Pair Instability possible with MESA including self-consistently dynamical evolution

Pulsational Pair Instability:

- determines BH masses below 2nd gap
 ⇒ LIGO/Virgo O3 will probe this process
- can create (He-rich, "slow" moving) CSM
 ⇒ connection with SNIbn progenitors?
- can modify binary orbit (and remnant spin)
 - \Rightarrow Signature on gravitational wave signals?

Backup slides

Upper-limits in BH mass

CCSN rates accounting for binarity

SN type II rates accounting for binarity

