

Live fast and die young: Massive, exploding, and speeding stars

Mathieu Renzo

mrenzo@flatironinstitute.org

Collaborators: Y. Götberg, E. Zapartas, S. Justham, K. Breivik, L. van Son, R. Farmer, M. Cantiello, B. D. Metzger, D. Hendricks, C. Xin, E. Farag, S. Oey, S. de Mink, ...

- Stay Curious do interrupt with questions!
- Work Together/Collegiality science is a team effort!
- Stay Fully Present (use devices only when needed)
- Actively Listen to Understand
- · Invite and welcome contributions from everyone

credits: U. Shah

I am a theoretical and computational astrophysicist

Dutch national supercomputer Cartesius

Numerical Simulations 4

- 1. Share my research
- 2. Experiment together with high-school teachers
 - · Connect research, outreach, and education
 - Leverage open science

- 1. Share my research
- 2. Experiment together with high-school teachers
 - · Connect research, outreach, and education
 - Leverage open science
- Q. What would you want from researchers?

Stellar evolution quickstart

The nearest star to us is the Sun

- Current age $\sim 4.5 \cdot 10^9$ yr
- Expected lifetime $\sim 10^{10}\,{
 m yr}$

•
$$L_{\odot} \simeq 4 \cdot 10^{33} \,\mathrm{erg} \,\mathrm{s}^{-1}$$

- $M_{\odot} \simeq 2 \cdot 10^{33} \,\mathrm{g} \simeq 10^4 \,M_{\chi} \sim 3 \cdot 10^5 \,M_{\oplus}$
- $R_{\odot} \simeq 6.95 \cdot 10^{10} \, {
 m cm}$

Stars are large balls of matter that "resist" their own weight

Pushing against gravity costs energy

Energy leaks as γ (and ν)

Stars produce their own energy by nuclear fusion

Pushing against gravity costs energy

Energy leaks as γ (and ν)

To compensate, stars produce energy by nuclear fusion

When they run out of "fuel" and are forced to evolve

Core burns heavier fuel, shells burn the leftovers

Core burns heavier fuel, shells burn the leftovers

Massive stars burn until Iron, then gravity wins

Supernova explosion: the birth Neutron Stars or Black Holes

Why massive stars? ($M_{\text{initial}} \gtrsim 7.5 M_{\odot}$)

$\boldsymbol{\zeta}$ Ophiuchi is the nearest massive star to Earth

Spitzer, NASA/JPL

They are the progenitors of neutron stars & black holes

EM:

O'Connor & Ott 2011, Ertl *et al.* 2016, 2020, Farmer *et al.* 2016, Morozova *et al.* 2015, 2016, Renzo *et al.* 2017, 2020a, b, c, Laplace *et al.* 2021, Vartanyan *et al.* 2021, Zapartas *et al.* 2017a, 2019, 2021a, b, Marchant *et al.* 2019, Farmer *et al.* 2019, 2020

GW:

LVK collaboration 2015-23, Vigna-Gómez *et al.* 2018, van Son *et al.* 2020, 2021, Callister, Renzo, Farr 2021, Renzo *et al.* 2021

Most massive stars are born with companion(s)

modified from Offner et al. 2022

see also Mason et al. 2010. Kobulnicky & Frver 2007. Moe & di Stefano 2017

The big dipper

Mizar & Alcor

chemical evolution

Stars move through their host galaxy: peculiar motion on top of orbit

Tetzlaff et al. 2011

Runaway stars are common among massive stars

How to measure stellar velocities

⇐ Special features

(if relatively nearby)

"Bow wave"

 $v_{\text{boat}} > v_{\text{wave}}$

How to measure stellar velocities

⇐ Special features

(if relatively nearby)

Radial velocities (Doppler shift)

How to measure stellar velocities

⇐ Special features

(if relatively nearby)

Radial velocities (Doppler shift)

Proper motions

(if distance known)

Measuring distances is one of the most difficult things in astrophysics

Measuring distances is one of the most difficult things in astrophysics

Measuring distances is one of the most difficult things in astrophysics

Angular velocity + parallax = projected physical velocity

A "renaissance" of stellar physics

driven by the Gaia space-telescope

Gaia scans the sky to measure d and v of <u>10s of billions</u> of stars

https://flathub.flatironinstitute.org/gaiadr3

gaia

- Distance \leftrightarrow parallax
- Velocities $\underset{\Downarrow}{\leftrightarrow}$ pm and RV

Enables lots of astrophysics

Apparent motion reflection of Earth's orbit around the Sun

Long term drift Stars' orbit around Galaxy + intrinsic motion

https://www.youtube.com/watch?v=0-jhyRIupY4

https://www.youtube.com/watch?v=cEsfqFDSpm0

Gaia requires multiple years of observations

Mission Elapsed Time 09:05:11:05:55:38

Why some star "run"?

- Binary SuperNova Scenario (BSN)
- Dynamical Ejection Scenario (DES)
BSN: the most common massive binary evolution path

Credits: ESO, L. Calçada, M. Kornmesser, S.E. de Mink - https://www.youtube.com/watch?v=pDDjEkGjV9U

Mass transfer occurs before the 1st explosion

• Spin-up

Packet 1981, Cantiello et al. 2007, de Mink et al. 2013, Renzo & Götberg 2021

Pollution

Blaauw 1993, Renzo & Götberg 2021

Rejuvenation

Hellings 1983, 1985, Renzo et al. 2023

The "widowed" star carries signatures of its past in a binary

Renzo & Zapartas 2020

What exactly disrupts the binary?

What exactly disrupts the binary?

Eldridge et al. 11, De Donder et al. 97

Why kicks? Neutron stars are usually faster than their progenitor stars

"Guitar nebula": $v_{\rm NS} \simeq 1000 \, {\rm km \ s^{-1}}$

Why kicks? Neutron stars are usually faster than their progenitor stars

Cordes et al. 1993, Chatterjee & Cordes 2004, de Vries et al. 2022

Kicks do not change companion velocity

Accretor stars can be runaways...

Velocity w.r.t. pre-explosion binary center of mass

Renzo et al. 2019b

Numerical results: http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

...but most are only walkaways

Renzo et al. 2019b

Numerical results: http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

...but most are only walkaways

Numerical results: http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

Constrain BSN with the nearest massive star to Earth

Spitzer, NASA/JPL

Walker *et al.* 1979, Herrero *et al.* 1994, van Rensbergen *et al.* 1996, Hoogerwerf *et al.* 2001, Villamariz & Herrero 2005, Walker & Koushnik 2005, Zee *et al.* 2018, Gordon *et al.* 2018, Neuhäuser *et al.* 2019, 2020, Renzo & Götberg 2021, Shepard *et al.* 2022

Constrain BSN with the nearest massive star to Earth

Walker et al. 1979, Herrero et al. 1994, van Rensbergen et al. 1996, Hoogerwerf et al. 2001, Villamariz & Herrero 2005, Walker & Koushnik 2005, Zee et al. 2018, Gordon et al. 2018, Neuhäuser et al. 2019, 2020, Renzo & Götberg 2021, Shepard et al. 2022

Observational constraints of ζ Oph.:

- distance $\simeq 107 \pm 4\,pc$
- total mass $\simeq 20 M_{\odot}$
- speed $\gtrsim 30\,km\;s^{-1}$
- rotation $v \sin(i) \gtrsim 310$
- inclination $i \gtrsim 56^{\circ}$
- "looks" (T_{eff}, L)
- age $\simeq 8\,\text{Myr}$
- strange surface composition

X Rotating single stars

(e.g., van Rensbergen et al. 96, Howarth & Smith 01, Villamariz & Herrero 05)

ζ Ophiuchi is single but we can trace it back to a neutron star

Neuhäuser *et al.* 2019, 2020 see also Blaauw 1952, 1961, van Rensbergen *et al.* 1996, Hoogerwerf *et al.* 2001, Lux *et al.* 2020

ζ Ophiuchi is single but we can trace it back to a neutron star

Neuhäuser et al. 2019, 2020 see also Blaauw 1952, 1961, van Rensbergen et al. 1996, Hoogerwerf et al. 2001, Lux et al. 2020

Why some star "run"?

- Binary SuperNova Scenario (BSN)
- Dynamical Ejection Scenario (DES)

Most stars are born in dense environments

JWST view of R136 in the LMC

Most stars are born in dense environments

N-body interactions (typically) least massive thrown out. Binaries matter...

- Cross section $\propto a^2 \gg R_*^2$
- (Binding) Energy reservoir

Poveda *et al.* 67

...but don't necessarily leave imprints!

JWST view of R136 in the LMC

DES: typically eject the lowest mass star

Typical outcome of dynamical interactions

Tighter and more massive binary

Timing of ejection

Most ejections happen early Before the first stellar death

 $\tau_{ej} < \tau_*$

Very sensitive to initial conditions

Renzo et al. 2019a

```
Lennon et al., 2018
```

40

Renzo et al. 2019a

```
40
Lennon et al., 2018
```


Renzo *et al.* 2019a

Lennon et al., 2018

40

Renzo et al. 2019a

```
Lennon et al., 2018
```

40

Summary of ejection mechanisms

Dynamical ejections

- Happen before SNe
- · Can produce higher velocities
- · Least massive thrown out
- Gaia hint: high efficiency

...Binaries are still important! but might not leave signature

Binary SN disruption

- Most binaries are disrupted
- Determined by SN kick
- Ejects accretor
- $v \simeq v_2^{\text{orb}}$ typically slow
- Leaves binary signature

spin up, pollution, rejuvenation

Summary of ejection mechanisms

Dynamical ejections

- Happen before SNe
- · Can produce higher velocities
- · Least massive thrown out
- Gaia hint: high efficiency
- ...Binaries are still important! but might not leave signature

Binary SN disruption

- Most binaries are disrupted
- Determined by SN kick
- Ejects accretor
- $v \simeq v_2^{\text{orb}}$ typically slow
- Leaves binary signature

spin up, pollution, rejuvenation

Both mechanism at play in the same population

Line-of-sight velocity

Both mechanism at play in the same population

Line-of-sight velocity

Both mechanism at play in the same population

3D velocity

Conclusions

Runaways: many massive stars are fast $v \gtrsim 30 \, \rm km \ s^{-1}$ Two mechanisms for $v \lesssim$ hundreds of km s⁻¹:

- BSN Supernova explosion in a binary
- DES Dynamical ejection from clusters

www.youtube.com/watch?v=jKWQmbB5EQE

Backup

Stars are like people: they get bigger as they grow

Simulation output from
Stars are like people: they get bigger as they grow

Stars are like people: they get bigger as they grow

Nuclear specific binding energy

Do BHs receive kicks?

 \rightarrow most remain bound to companion

YES

 \Rightarrow most are single and we can't see them...

Do BHs receive kicks?

→ most remain bound to companion

YES

 \Rightarrow most are single and we can't see them...

Massive runaways mass function ($v \ge 30 \text{ km s}^{-1}$, $M \ge 7.5 M_{\odot}$)

Renzo et al. 19b

Massive runaways mass function ($\nu \ge 30 \,\mathrm{km \ s^{-1}}$, $M \ge 7.5 \,M_{\odot}$)

stars

Massive runaways mass function ($v \ge 30 \text{ km s}^{-1}$, $M \ge 7.5 M_{\odot}$)

Numerical results publicly available at::

Renzo et al. 19b

stars

Massive runaways mass function ($\nu \ge 30 \text{ km s}^{-1}$, $M \ge 7.5 M_{\odot}$)

Numerical results publicly available at::

Self-consistent MESA model

Z = 0.01

(Murphy et al. 2021)

 $M_2 = 17 M_{\odot}$

P = 100 days(case B RLOF)

 $M_1 = 25 M_{\odot}$

Does a binary past help with ζ Oph. Spin-up – Pollution – Rejuvenation

Natal rotation would need to be extreme to match

weak-wind problem, neglecting inclination

✓ Spin up: late and to critical rotation

weak-wind problem, neglecting inclination

weak-wind problem, neglecting inclination

Pollution:

Surface composition partly comes from the donor's core

Joint constrain on accretion and internal mixing

Pollution:

Surface composition partly comes from the donor's core

Joint constrain on accretion and internal mixing

Rejuvenation:

Core growth changes its outer boundary

end of H-core burning, later evolution amplifies differences (e.g., Renzo *et al.* 2017)

Renzo & Götberg 2021, Renzo et al. 2023

Asymmetries in the explosion cause the "kick"

- ν -driven convection
- rotation
- hydrodynamical flow

Asymmetries in the explosion cause the "kick"

