Explosions in massive binaries:

"widowed" stars and consequences for GW astronomy

Mathieu Renzo PhD in Amsterdam

Collaborators: S. E. de Mink, E. Zapartas, Y. Götberg, E. Laplace, R. J. Farmer, S. Toonen, S. Justham, R. G. Izzard, D. J. Lennon, H. Sana, S. N. Shore

NASA, JPL-Caltech, Spitzer Space Telescope

Why are massive stars important?

Nucleosynthesis & Chemical Evolution

Star Formation

Ň

Ionizing Radiation

Supernovae

GW Astronomy

NASA, JPL-Caltech, Spitzer Space Telescope

Why are massive stars important?

Nucleosynthesis & Chemical Evolution

Star Formation

Ň

Ionizing Radiation

Supernovae

GW Astronomy

NASA, JPL-Caltech, Spitzer Space Telescope

${\sim}70\%$ of O type stars will interact with a companion

(e.g., Mason *et al.* '09, Sana & Evans '11, Sana *et al.* '12, Kiminki & Kobulnicky '12, Kobulnicky *et al.* '14, Almeida *et al.* '17)

Masses in the Stellar Graveyard

BH or NS?

Single stars winds impact on the core structure

Keep the stars together

- The most common evolution for massive binaries
- Constraints on BH kicks using runaway "widow"

The most massive (stellar) BHs

- (Pulsational) pair instability
 - The BH mass distribution
 - Induced eccentricity
 - Post-pulsations BH spins

Conclusions

BH or NS?

Single stars winds impact on the core structure

Keep the stars together

• The most common evolution for massive binaries

• Constraints on BH kicks using runaway "widow"

The most massive (stellar) BHs

- (Pulsational) pair instability
 - The BH mass distribution
 - Induced eccentricity
- Post-pulsations BH spins

Conclusions

Problems: High Non-Linearity and Clumpiness

Inhomogeneities: $f_{\rm cl} \stackrel{\rm def}{=} \frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2} \neq 1 \Rightarrow \dot{M} \neq 4\pi r^2 \rho v(r)$

Risk:

Possible overestimation of the wind mass loss rate

Inhomogeneities: $f_{\rm cl} \stackrel{\text{def}}{=} \frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2} \neq 1 \Rightarrow \dot{M} = \eta \, 4\pi r^2 \rho v(r)$

ANTON PANNEKOEK INSTITUTE

Grid of Z_{\odot} non-rotating models:

$$M_{
m ZAMS} = \{ 15, \ 20, \ 25, \ 30, \ 35 \} \ M_{\odot}$$

 $\eta = \{ 1, \ rac{1}{3}, \ rac{1}{10} \}$

Combinations of wind mass loss rates for "hot" ($T_{\rm eff} \ge$ 15 [kK]), "cool" ($T_{\rm eff} <$ 15 [kK]) and WR:

Kudritzki *et al.* '89; Vink *et al.* '00, '01; Van Loon *et al.* '05; Nieuwenhuijzen *et al.* '90; De Jager *et al.* '88; Nugis & Lamers '00; Hamann *et al.* '98.

Impact on the final mass

Impact on the final mass

Pre-explosion appearance

ANTON PANNEKOEK INSTITUTE

Renzo et al. '17

"Explodability" & Compactness

ANTON PANNEKOEK INSTITUTE

Single parameter to describe the core structure

ə.g.,	O'Connor & Ott '11,		
	Ugliano <i>et al.</i> '12,		
	Sukhbold & Woosley	'14,	
out see (for 3D explosions):			
	Ott <i>et al.</i> '18,		
	Kuroda <i>et al.</i> '18		
		$\mathcal{M} = \mathcal{M}$	2.57

 $R(\mathcal{M})$

10

Renzo et al. '17

Log time to core-collapse

Log time to core-collapse

ANTON PANNEKOEK INSTITUTE

BH or NS?

Single stars winds impact on the core structure

Keep the stars together

The most common evolution for massive binaries

• Constraints on BH kicks using runaway "widow"

The most massive (stellar) BHs

- (Pulsational) pair instability
 - The BH mass distribution
 - Induced eccentricity
- Post-pulsations BH spins

Conclusions

Binary disruption

Credits: ESO, L. Calçada, M. Kornmesser, S.E. de Mink

Spin up, pollution, and rejuvenation

ANTON PANNEKOEK INSTITUTE

The binary disruption shoots out the accretor

Spin up: Packet '81, Cantiello *et al.* '07, de Mink *et al.* '13 Pollution: Blaauw '93 Rejuvenation: Hellings '83, Schneider *et al.* '15

ě

What exactly disrupts the binary?

 86^{+11}_{-9} % of massive binaries are disrupted

Renzo et al. 18, arXiv:1804.09164

Unbinding Matter

(e.g., Blaauw '61)

• Ejecta Impact

(e.g., Wheeler et al. '75,

Tauris & Takens '98, Liu et al. '15)

SN Natal Kick

(e.g., Shklovskii '70, Janka '16)

INSTITUTE

What exactly disrupts the binary?

 86^{+11}_{-9} % of massive binaries are disrupted

Renzo et al. 18, arXiv:1804.09164

Unbinding Matter

(e.g., Blaauw '61)

• Ejecta Impact

(e.g., Wheeler et al. '75,

Tauris & Takens '98, Liu et al. '15)

• SN Natal Kick

(e.g., Shklovskii '70, Janka '16)

INSTITUTE

What exactly disrupts the binary?

 86^{+11}_{-9} % of massive binaries are disrupted

Renzo et al. 18, arXiv:1804.09164

Unbinding Matter

(e.g., Blaauw '61)

• Ejecta Impact

(e.g., Wheeler et al. '75,

Tauris & Takens '98, Liu et al. '15)

• SN Natal Kick

(e.g., Shklovskii '70, Janka '16)

 $v_{\rm dis} \simeq v_{2,{\rm orb}}^{{\rm pre-SN}} = \frac{M_1}{M_1 + M_2} \sqrt{\frac{G(M_1 + M_2)}{a}}$ Most binaries produce a slow "walkaway" star

INSTITUTE

SN natal kick

Observationally: $v_{\text{pulsar}} \gg v_{\text{OB-stars}}$

Physically: v emission and/or ejecta anisotropies

Credits: Ott, C. D., Drasco, S.

SN natal kick

Observationally: $v_{\text{pulsar}} \gg v_{\text{OB-stars}}$

Physically: v emission and/or ejecta anisotropies

Credits: Ott, C. D., Drasco, S.

BH kicks?

ANTON PANNEKOEK INSTITUTE

BH or NS?

Single stars winds impact on the core structure

Keep the stars together

The most common evolution for massive binaries

Constraints on BH kicks using runaway "widow"

The most massive (stellar) BHs

- (Pulsational) pair instability
 - The BH mass distribution
 - Induced eccentricity
- Post-pulsations BH spins

Conclusions

Renzo et al., submitted, arXiv:1804.09164

Renzo et al., submitted, arXiv:1804.09164

ANTON PANNEKOEK INSTITUTE

BH or NS?

• Single stars winds impact on the core structure

Keep the stars together

The most common evolution for massive binaries

• Constraints on BH kicks using runaway "widow"

The most massive (stellar) BHs

- (Pulsational) pair instability
 - The BH mass distribution
 - Induced eccentricity
 - Post-pulsations BH spins

Conclusions

Radiation dominated: $P_{\rm tot} \simeq P_{\rm rad}$

Woosley 2017,

Marchant, Renzo et al. arXiv:1810.13412,

Renzo, Farmer et al., to be submitted

Renzo, Farmer, et al., to be submitted

Renzo, Farmer, et al., to be submitted

4b. PISN: complete disruption

4a. Pulse with mass ejection

Renzo, Farmer, et al., to be submitted

Renzo, Farmer, et al., to be submitted

BH or NS?

• Single stars winds impact on the core structure

Keep the stars together

The most common evolution for massive binaries

• Constraints on BH kicks using runaway "widow"

The most massive (stellar) BHs

- (Pulsational) pair instability
 - The BH mass distribution
 - Induced eccentricity
- Post-pulsations BH spins

Conclusions

BH or NS?

• Single stars winds impact on the core structure

Keep the stars together

The most common evolution for massive binaries

• Constraints on BH kicks using runaway "widow"

The most massive (stellar) BHs

- (Pulsational) pair instability
 - The BH mass distribution
 - Induced eccentricity
 - Post-pulsations BH spins

Conclusions

PPI in a binary

ANTON PANNEKOEK INSTITUTE

Two PPI in a binary

ANTON PANNEKOEK INSTITUTE

$$\Delta \boldsymbol{e} = rac{\Delta M}{M_1 + M_2 - \Delta M}$$

Eccentricity distribution

BH or NS?

• Single stars winds impact on the core structure

Keep the stars together

• The most common evolution for massive binaries

• Constraints on BH kicks using runaway "widow"

The most massive (stellar) BHs

- (Pulsational) pair instability
 - The BH mass distribution
 - Induced eccentricity
- Post-pulsations BH spins

Conclusions

Spin down due to PPI ejecta

ANTON PANNFKOEK TUTE

32/32

BH or NS?

• Single stars winds impact on the core structure

Keep the stars together

The most common evolution for massive binaries

• Constraints on BH kicks using runaway "widow"

The most massive (stellar) BHs

- (Pulsational) pair instability
 - The BH mass distribution
 - Induced eccentricity
 - Post-pulsations BH spins

Conclusions

Take home points

- Uncertain wind mass loss rates influence the pre-SN core
 - \Rightarrow systematic bias in SN initial conditions and outcome?
- The vast majority of binaries are disrupted
 - \Rightarrow X-ray binaries and GW sources are exceptions
- Binarity leaves imprint on the ejected star

Simulations of Pulsational Pair Instability possible with MESA including self-consistently dynamical evolution

- can modify binary orbit and remnant spin
 ⇒ Signature on gravitational wave signals?
- determines BH masses below 2nd gap

Take home points

- Uncertain wind mass loss rates influence the pre-SN core
 - \Rightarrow systematic bias in SN initial conditions and outcome?
- The vast majority of binaries are disrupted
 - \Rightarrow X-ray binaries and GW sources are exceptions
- Binarity leaves imprint on the ejected star

Simulations of Pulsational Pair Instability possible with MESA including self-consistently dynamical evolution

can modify binary orbit and remnant spin
 ⇒ Signature on gravitational wave signals?

 determines BH masses below 2nd gap
 Thank you!

Backup slides

Upper-limits in BH mass

 $M_{\rm He} = 48.5 \, M_{\odot}$ 1 Mass lost in previous pulses Outgoing pulse wave velocity $[10^8 \text{cm s}^{-1}]$ Vesc 0 -1 Infalling core 35 45 0 5 10 15 20 25 30 40 50 $M [M_{\odot}]$

How many pulses?

as a function of He core mass

Number of pulses

ANTON PANNEKOEK INSTITUTE

Renzo, Farmer et al., to be submitted

When do the pulsate?

• as a function of He core mass

Pulses timing

Pulses timing

S ANTON PANNEKOEK

How much mass is ejected per pulse? How much mass is ejected in total?

• as a function of He core mass

Total mass lost

INSTITUTE

How fast are the ejected shells?

as a function of He core mass

Center of mass velocity

ANTON PANNEKOEK INSTITUTE

Center of mass velocity

ANTON PANNEKOEK INSTITUTE

Can the mass shell collide?

Woosley et al 07, Chen et al. 14, Woosley 17, Renzo, Farmer et al., to be submitted

Can the mass shells collide?

ANTON PANNEKOEK INSTITUTE

Velocity distribution: Runaways

ANTON PANNEKOEK INSTITUTE

Velocity distribution: Walkaways

ANTON PANNEKOEK

INSTITUTE

Take home points:

- Walkaways outnumber the runaways by \sim 10×
- Binaries barely produce $v_{\rm dis}\gtrsim 60\,{\rm km~s^{-1}}$
- All runaways from binaries are post-interaction objects Renzo *et al.*, submitted, arXiv:1804.09164

Velocity distribution: Walkaways

- Binaries barely produce $v_{
 m dis}\gtrsim 60\,{
 m km}~{
 m s}^{-1}$
- All runaways from binaries are post-interaction objects Renzo et al., submitted, arXiv:1804.09164