Tesi di Laurea Magistrale Università di Pisa - Dipartimento di Fisica 03/06/2015

Systematic Study of Mass Loss in the Evolution of Massive Stars

Mathieu Renzo

advisors: Prof. S. N. Shore, Prof. C. D. Ott

Introduction

- Importance of Massive Stars
- How do they lose mass?

Stellar Winds

- Outline of the Theory
- Methods
- Results: Amplitude of the Uncertainty
- Results: Blue Loops in $15M_{\odot}$ models

Impulsive Mass Loss Events

- Motivations for This Study
- Methods
- Results: Wind + Impulsive Mass Loss
- Results: pre-SN Stripped Structures

Conclusions

Introduction

- Importance of Massive Stars
- How do they lose mass?

Stellar Winds

- Outline of the Theory
- Methods
- Results: Amplitude of the Uncertainty
- Results: Blue Loops in $15M_{\odot}$ models

Impulsive Mass Loss Events

- Motivations for This Study
- Methods
- Results: Wind + Impulsive Mass Loss
- Results: pre-SN Stripped Structures

Conclusions

Why are Massive Stars Important?

$M_{ m ZAMS}\gtrsim 8-10\,M_{\odot}$

- Nucleosynthesis
- Chemical Evolution of Galaxies
- Effects on Star Formation
- Re-ionization Epoch
- Observations of Farthest Galaxies
- Catastrophic Events

... for the environment of the stars?

- Pollution of the InterStellar Medium (ISM)
- Tailoring of the CircumStellar Material (CSM)
- Effects on the Star Formation

... for the stellar structure?

- Evolutionary Timescales
- Final Fate (BH, NS or WD?)
- Light Curve and Explosion Spectrum
- Appearance: CSM and Wind Features (e.g. WR)
- Role in the Solution of the RSG Problem ?

Radiative Driving Stellar Winds **Dynamical Instabilities** LBVs, Impulsive Mass Loss, Pulsations, Super-Eddington Winds **Binary interactions** Roche Lobe OverFlows

Figure: η Carinae.

Introduction

- Importance of Massive Stars
- How do they lose mass?

Stellar Winds

- Outline of the Theory
- Methods
- Results: Amplitude of the Uncertainty
- Results: Blue Loops in $15M_{\odot}$ models

Impulsive Mass Loss Events

- Motivations for This Study
- Methods
- Results: Wind + Impulsive Mass Loss
- Results: pre-SN Stripped Structures

Conclusions

Radiatively Driven Winds in One Slide

Problems: High Non-Linearity and Clumpiness: $f_{cl} \stackrel{\text{def}}{=} \frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2} \neq 1 \Rightarrow$ Inhomogeneities $\Rightarrow \dot{M} \neq 4\pi r^2 \rho v(r)$

Problems: High Non-Linearity and Clumpiness: $f_{cl} \stackrel{\text{def}}{=} \frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2} \neq 1 \Rightarrow$ Inhomogeneities $\Rightarrow \dot{M} \neq 4\pi r^2 \rho v(r)$

Mass Loss in MESA

(Semi-)Empirical parametric models. Uncertainties encapsulated in efficiency factor: $\dot{M}(L, T_{\rm eff}, Z, R, M, ...)$ $\eta \dot{M}(L, T_{\rm eff}, Z, R, M, ...)$ η is a **free** parameter:

 $\eta \in [0, +\infty)$

Figure: From Smith 2014, ARA&A, 52, 487S

Different dM/dt algorithms with MESA

- Grid of $Z_{\odot} \simeq 0.019$, non-rotating stellar models:
 - Initial mass:

$$M_{\rm ZAMS} = \{15, 20, 25, 30\} M_{\odot};$$

• Efficiency:

$$\eta \equiv \sqrt{f_{\rm cl}} = \{1, \frac{1}{3}, \frac{1}{10}\};$$

• Different combinations of wind mass loss rates for "hot" ($T_{\rm eff} \ge 15~[{\rm kK}]$), "cool" ($T_{\rm eff} < 15~[{\rm kK}]$) and WR stars:

Kudritzki *et al.* '89; Vink *et al.* '00, '01; Van Loon *et al.* '05; Nieuwenhuijzen *et al.* '90; De Jager *et al.* '88; Nugis & Lamers '00; Hamann *et al.* '98.

Results: Relative Final Mass

Diamonds $\Leftrightarrow \eta = 1.0$, Squares $\Leftrightarrow \eta = 0.33$, Circles $\Leftrightarrow \eta = 0.1$.

 \Rightarrow Early ("hot") wind influences subsequent evolution

- Blue loop ⇔ Large He-core
- Convection mixes H down, determining $M_{\rm He}$
- μ is higher in He-rich regions

- Blue loop starts when H-burning shell reaches the edge of the He core
- Lower μ and higher $X \Rightarrow$ Variations of ε_{nuc}
- Envelope responds on its thermal timescale

\Downarrow

- if $\eta < 1 \Rightarrow$ He core edge too deep for Blue Loops
- Vink et al. rate yields larger cores allowing for Blue Loops >

Results of the Comparison of Wind Algorithms:

- η has a larger influence on the final mass than the wind algorithm;
- Early ("hot phase") mass loss influences the further evolution;
- \dot{M} is more uncertain when it is higher (RSG phase);
- Different algorithmic representations of stellar winds
 ⇒ Qualitatively different evolutionary tracks;
- Small number (8) of WR stars, none with $\eta < 1 \Rightarrow$ Other mass loss mechanism(s) to form WR?

Introduction

- Importance of Massive Stars
- How do they lose mass?

Stellar Winds

- Outline of the Theory
- Methods
- Results: Amplitude of the Uncertainty
- Results: Blue Loops in $15M_{\odot}$ models

Impulsive Mass Loss Events

- Motivations for This Study
- Methods
- Results: Wind + Impulsive Mass Loss
- Results: pre-SN Stripped Structures

Conclusions

Observational Evidence:

- LBVs
- Progenitors of H-poor core collapse SNe ($\sim 30\%$)
- Dense CSM for Type IIn SNe

Theory: Dynamical Events \Rightarrow MESA not ready

- Pulsational Instabilities
- Roche Lobe Overflow
 in binaries
- Catastrophic Eruption(s)

Cyan Diamond: Maximum Extent Convective Envelope.

Impulsive + wind mass loss drives blueward evolution

pre-SN Stripped Structures

Introduction

- Importance of Massive Stars
- How do they lose mass?

Stellar Winds

- Outline of the Theory
- Methods
- Results: Amplitude of the Uncertainty
- Results: Blue Loops in $15M_{\odot}$ models

Impulsive Mass Loss Events

- Motivations for This Study
- Methods
- Results: Wind + Impulsive Mass Loss
- Results: pre-SN Stripped Structures

Conclusions

- Large systematic uncertainties in massive star mass loss rates
- Different algorithms ⇒ Qualitatively different evolutionary tracks
- Uncertainty increases at higher $M_{
 m ZAMS}$ and η

- Combined impulsive + wind mass loss drives blueward evolution
- Does impulsive mass loss have an effect on the "Explodability" of the star?

Thank you for your attention.

Figure Credits

Roughly in order of appearance. Some figure where modified. Figure not listed are from myself. Click for original link.

- 30 Doradus (Tarantula Nebula)
- Observative HR
- Crab Nebula
- Orion
- Reionization Epoch
- Bubble Nebula
- SN1987A
- CCSN entropy rendering
- SN observations
- η Car
- Betelgeuse

- Mass Loss Rate plot
- AG car
- Type Ib SN
- WR 124
- WR spectra
- P Cygni line profile:S. N. Shore "Astrophysical Hydrodynamics", Wiley-VCH, 2007.
- P Cygni (34 Cyg)

- P Cygni line profiles
- Optical and near UV lines (e.g. $H\alpha$)
- Radio and IR continuum excess
- IR spectrum of molecules (e.g. CO)
- Maser lines (for low density winds) Assumptions commonly needed:
- Velocity structure: $v(r) \simeq \left(1 rac{r}{R_*}
 ight)^{eta}$ with $eta \simeq 1$
- Chemical composition and ionization fraction
- Spherical symmetry: $\dot{M} = 4\pi r^2 \rho v(r)$
- Steadiness and (often) homogeneity

 \dot{M} derived from fit of (a few) spectral lines. No theoretical guaranties coefficients are constant.

Back

Wolf-Rayet Stars

Observational Definition:

Based on spectral features indicating a Strong Wind:

- Hydrogen Depletion (\neq Lack of Hydrogen)
- Broad Emission Lines
- Steep Velocity Gradients

Sub-categories: WN,WC,WO,WNL, etc.

Computational Definition (MESA):

• $X_s < 0.4$

Impossible to distinguish sub-categories without spectra!

P Cygni Line Profiles

Back

- Blue shifted Absorption Component
- Red shifted Emission Component
- Broadening from scattering into the line of sight

 $\dot{M} = 4\pi\rho v(r)$

Assuming:

Chemical composition Velocity Structure the fit of the line profile gives ρ

Figure: 34 Cyg or P Cygni, first star to show the eponymous profile. $\mathfrak{B}R(t)$ for $15M_{\odot}$ Models during Blue Loops

Stellar counts

- Cannot be compared to clusters or single populations
- Higher $\eta \Rightarrow \text{lower } M \Rightarrow$ slower evolution
- Different cut-offs in L and $T_{\rm eff}$
- Kudritzki *et al.* rate with $\eta = 1.0$ produces a loop in the HR diagram tracks, resulting in the over-population shown.

