

Group meeting - May 30

The impact of stellar winds on the final structure and fate of massive stars

Collaborators: C. D. Ott, S. N. Shore, S. E. de Mink, E. Zapartas, Y. Götberg

NASA, JPL-Caltech, Spitzer Space Telescope

Mathieu Renzo

PhD in Amsterdam

ANTON PANNEKOEK INSTITUTE

Stellar winds

- Line driving mechanism
 - Algorithmic treatment

Impact on:

- Final mass & appearance
 - Core structure

Conclusions

Take home points

Problems: High Non-Linearity and Clumpiness

INSTIT

Inhomogeneities: $f_{\rm cl} \stackrel{\rm def}{=} \frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2} \neq 1 \Rightarrow \dot{M} \neq 4\pi r^2 \rho v(r)$

Risk:

Possible overestimation of the wind mass loss rate

Inhomogeneities: $f_{\rm cl} \stackrel{\rm def}{=} \frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2} \neq 1 \Rightarrow \dot{M} \neq 4\pi r^2 \rho v(r)$

ANTON PANNEKOEK INSTITUTE

Stellar windsLine driving mechanismAlgorithmic treatment

Impact on: Final mass & appearance Core structure

Conclusions

Take home points

Mass loss in MESA

Figure: from N. Smith 2014, ARA&A, 52, 487

Grid of $Z_{\odot} = 0.019$, non-rotating stellar models: • Initial mass:

$$M_{\rm ZAMS} = \{15, 20, 25, 30, 35\} M_{\odot};$$

• Efficiency:

$$\eta = \{1, \frac{1}{3}, \frac{1}{10}\};$$

- Combinations of wind mass loss rates for "hot" $(T_{\rm eff} \ge 15 \ [\rm kK])$, "cool" $(T_{\rm eff} < 15 \ [\rm kK])$ and WR:

Kudritzki *et al.* '89; Vink *et al.* '00, '01; Van Loon *et al.* '05; Nieuwenhuijzen *et al.* '90; De Jager *et al.* '88; Nugis & Lamers '00; Hamann *et al.* '98.

ANTON PANNEKOEK Institute

Stellar winds

Line driving mechanismAlgorithmic treatment

Impact on: Final mass & appearance Core structure

Conclusions

Take home points

Wind mass loss history

$$\begin{array}{c} \eta = 1.0 \\ \dots \eta = 0.33 \\ \dots \eta = 0.1 \\ \hline V - dJ \\ \hline V - vL \\ \hline V - vL \\ \hline V - NJ \\ \hline K - NJ \\ \hline K - MJ \\ \hline K - dJ \end{array}$$

Renzo et al., arXiv:1703.09705 10/23

Wind mass loss history

10/23

Impact on the final mass

Impact on the final mass

ANTON PANNER

Pre-explosion appearance

5.8 BSG &WR YSG RSG 5.7 5.6 ♣ 5.5 $\log_{10}(L/L_{\odot})$ 5.4 $15 \, M_{\odot}$ $20 \, M_{\odot}$ 5.3 $25 \, M_{\odot}$ $30 M_{\odot}$ 5.2 $35 M_{\odot}$ $\eta = 1.0$ 5.1 = 0.33 $\eta = 0.1$ 5.0 3.9 3.6 3.5 4.1 4.03.8 3.7 $\log_{10}(T_{\rm eff}/[\rm K])$

13/23

ANTON PANNEKOEK INSTITUTE

Stellar winds

Line driving mechanismAlgorithmic treatment

Impact on: • Final mass & appearance

Core structure

• Take home points

"Explodability" & Compactness

 $\xi_{\mathcal{M}}(t) \stackrel{\mathrm{def}}{=} rac{\mathcal{M}/M_{\odot}}{R(\mathcal{M})/1000 \ \mathrm{km}}$

• "Large" $\xi_{2.5} \Rightarrow$ harder to explode \Rightarrow BH formation • "Small" $\xi_{2.5} \Rightarrow$ easier to explode \Rightarrow NS formation

(e.g., O'Connor & Ott '11, Ugliano *et al.* '12, Sukhbold & Woosley '14)

not to scale!

 $R(\mathcal{M})$

Critical point: Ne core burning/C shell burning

 $\xi_{2.5}$ @ O depletion

no expl. 0.250 0.240 0.230 0.220 BH, 0.210 $\xi_{2.5}^{
m O~depl}$ 0.200 0.190 0.180 0.170 0.160 **SN** 0.150 0.140 0.170 15 20 25 30 $M_{\rm ZAMS} [M_{\odot}]$

Renzo et al., arXiv:1703.09705 17/23

$\xi_{2.5}$ @ Oxygen Depletion

ANTON PANNEKOEK INSTITUTE

Computing Advanced Burning Stages

- Initially small effect $\Rightarrow N_{
 m zones} \gtrsim 20\,000$
- Complex nuclear burning $\Rightarrow N_{\rm iso}\gtrsim 200$

$$M_{\mathrm{Ch}}^{\mathrm{eff}} \sim (5.83 M_{\odot}) Y_{e}^{2} \left[1 + \left(\frac{s_{e}}{\pi Y_{e}} \right)^{2} \right]$$

<code>approx21.net</code> $\Rightarrow^{56} {\rm Fe} + 2e^- \rightarrow^{56} {\rm Cr} + 2\nu_e$

$$Y_e(r=0) \equiv Y_e({}^{56}\mathrm{Cr}) = 0.428$$

Largest array size in MESA: $\mathcal{L} \sim (N_{iso} + N_{zones})^2 \sim ((N_{iso} + 5) \cdot N_{zones}) \cdot (3N_{iso} + 9)$

 $\mathcal{L} \text{ is a FORTRAN integer} \Rightarrow max\{memory\} = 17\,Gb$

ANTON PANNE

INSTITUTE

20/23

Post O burning evolution

Si shell burning \rightarrow

 ${\sim}30\%$ Uncertainty in $\xi_{2.5}^{pre-SN}$

	$M_{\rm ZAMS} [M_{\odot}]$	η	ID	$\tilde{\zeta}_{2.5}^{\text{pre}-SN}$	$M_4 \; [M_\odot]$	μ_4	$M_{ ho_6} \ [M_\odot]$	$M_{ m CO} \; [M_\odot]$	$M_{\rm Fe}~[M_\odot]$
-	15	1.0	V-NJ	0.103	1.71	0.045	1.68	2.91	1.39
			K-vL	0.132	1.78	0.051	1.79	3.07	1.50
-	25	0.33	V-vL	0.227	1.73	0.084	1.84	6.38	1.51
			K-dJ	0.308	2.05	0.100	2.19	6.40	1.63
	30	0.33	V-dJ	0.358	1.60	0.163	2.21	7.98	1.56
			K-NJ	0.276	1.82	0.100	1.98	7.90	1.58

Renzo et al., arXiv:1703.09705 20/23

ANTON PANNEKOEK Institute

Stellar winds

Line driving mechanismAlgorithmic treatment

Impact on: Final mass & appearance Core structure

Conclusions

Take home points

INSTIT

Uncertainties in stellar winds:

- pre-SN mass \Rightarrow no $M_f \equiv M_f(M_{\text{ZAMS}})$ map;
- cannot solve "RSG problem";
- core structure \Rightarrow "explodability" & remnant.

INSTIT

ANTON P

Uncertainties in stellar winds:

- pre-SN mass \Rightarrow no $M_f \equiv M_f(M_{\text{ZAMS}})$ map;
- cannot solve "RSG problem";
- core structure \Rightarrow "explodability" & remnant.

ANTON PANNEKOEK INSTITUTE

Backup slides

Resolution @ O depletion

____ffL pannekoek

- P Cygni line profiles
- Optical and near UV lines (e.g. $H\alpha$)
- Radio and IR continuum excess
- IR spectrum of molecules (e.g. CO)
- Maser lines (for low density winds) Assumptions commonly needed:
- Velocity structure: $v(r) \simeq \left(1 rac{r}{R_*}
 ight)^{eta}$ with $eta \simeq 1$
- Chemical composition and ionization fraction
- Spherical symmetry: $\dot{M} = 4\pi r^2 \rho v(r)$
- Steadiness and (often) homogeneity

 \dot{M} derived from fit of (a few) spectral lines. No theoretical guaranties coefficients are constant.

Back

Back P Cygni Line Profiles

- Blue shifted Absorption^{INSTITUTE}
 Component
- Red shifted Emission Component
- Broadening from scattering into the line of sight

 $\dot{M} = 4\pi\rho v(r)$

Assuming:

Chemical composition Velocity Structure the fit of the line profile gives ρ

Figure: 34 Cyg or P Cygni, first star to show the eponymous profile.