
Computational Astrophysics – 18/01/16

How we “look” inside stars:
stellar evolution codes &

Mathieu Renzo,
PhD student @ API, UvA

“Traditional scientific knowledge has generally taken the form of
either theory or experimental data. However, where theory and

experiment stumble, simulations may offer a third way.”
Simulation, Johannes Lenhard et al.
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Outline

The most important thing

What is (Computational) “Stellar Astrophysics”?

The stellar evolution code
• Basic Assumptions
• Discretization
• Translation of the Physics for the Computer
• Example of input Physics: Nuclear Reaction Networks
• How the Computer Solves the Equations

What do I do with it?
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The most important thing
This is what should not happen

grep is your friend! (see man grep on *nix)
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How can we “look” inside a star?
Figures Credits: NASA

?⇒

We simply can’t!!
Other Q: How can we observe how one star evolves?
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So what to do?

1 Build a theory from first
principles;

2 Plug it in a computer;
3 Get out a model;
4 Find a smart way to

compare it to what we
can observe.

Advantages
• Full control over the parameters
⇒ Numerical Experiments;

• Allow to focus on interesting
things (e.g. no reddening!);

• Allow to deal with long-lasting,
rare, inaccessible phenomena;

Drawbacks
• Numerical errors;
• Limited computational resources;
• Nature� Theory� Model.

“All models are wrong, but some are useful” – G. Box
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The Stellar Evolution Code:

is a tool, not a theory!
What does it stand for?

Modules for
Experiments in
Stellar
Astrophysics

References:

Paxton et al. 2011, ApJs192,3
Paxton et al. 2013, ApJs208,4
Paxton et al. 2015, ApJs220,15
mesa.sourceforge.net
mesastar.org

Open Source⇔ Open Know How
“An algorithm must be seen to be believed” – D. Knuth

How to get MESA:
svn co -r 7624 svn://svn.code.sf.net/p/mesa/code/trunk mesa9 / 24

mesa.sourceforge.net
mesastar.org


Modules overview
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Numerical Methods: 1D (or 1.5D)

Prohibitive computational cost of 3D simulations
⇒ 1D, but stars are not spherical-symmetric!

Need of parametric approximations for:
• Rotation⇒ “Shellular Approximation”;
• Magnetic Fields;
• Convection⇒ Mixing Length Theory (MLT);
• (Some) mixing processes;
• ...

Beware of systematic errors!
(Recall: Nature� Model)
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Numerical Methods: Hydrostatic code...

dP
dr = −Gm(r )ρ

r2

... but stars are not necessarily static!

Figure: η Car, APOD.

Other examples:
• He flash,
• Outburst and Eruptions,
• Impulsive mass loss,
• RLOF,
• ...
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Numerical Methods: Discretization

For numerical solutions:
df
dx
→ f (xk+1)− f (xk)

xk+1− xk
⇒ Discretization of space (mesh or grid) and

time (timesteps)
(Recall: Nature� Model)
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Spatial Discretization (Meshing)
toward surface

toward center

mk−1, rk−1, Lk−1, vk−1, ...face k-1

mk, rk, Lk, vk, σ

σ

k,

, ,

Fi,k ,dmk Pk, T k, ∇T, kface k

mk+1, rk+1, Lk+1, vk+1, k+1, Fi,k+1, ...face k+1

dmk−1 ρk−1, Tk−1, Xi,k−1, Pk−1, ...cell k-1

dmk ρk, Tk, Xi,k, Pk, ∇ad,k εnuc,k εgrav,kcell k

Figure: From Paxton et al. 2011, ApJs, 192, 3

• Intensive quantities
(e.g. T ,ρ) averaged
by mass within each
cell;

• Extensive quantities
(e.g. m,L) calculated
at outer cell boundary.

Need to check that your physical results do not depend on the way
you discretize space.
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Numerical Methods: Timestep selection
∆tn: Large enough, but . τKH, τṀ , etc.

Need to find the best ∆tn at each step – few×100.total n .few×104
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Reformulation of the (1D–) Equations

Physical Theory: Numerical Implementation:

dP
dr = −Gm(r )ρ

r2

(
+ F

4πr2

)
⇔

dm
dr = 4πr2ρ ⇔

dT
dr = − 3

16πac
κρL
r2T 3 ⇔

dL
dr = 4πr2ρε ⇔
P ≡ P(ρ, µ,T ) ⇔

dXi
dt

∣∣∣∣
r
=

[
∑
j
Pj,i(T , ρ)−∑

k
Di,k (T , rho, )

]
+

[
σi∇2Xi

]
⇔
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Numerical Methods: Nuclear Networks

What matters:
• Total Number

of Isotopes Niso;
• Which Isotopes;
• Number of Nuclear

Reactions.

(Ex. of) tricks under the hood:
• Compound reactions, e.g. 3α:

α + α→
(8Be + α→

) 12C + γ;
• (Quasi Statistical Equilibrium

Networks for advanced
burning stages);

High impact on:

• Computational cost (∝ N2
iso)

⇒ Run time;
• εnuc ⇒ L,Tc, ρc, etc.;
• Free electrons (Ye)⇒

Final fate (BH,NS, WD, etc.)
17 / 24



Numerical Methods: The Matrix to Solve

P
T
L
R

1H
3He
4He
12C
14N
16O

20Ne
24Mg

Variables

E
qu

at
io

ns
 fo

r c
el

l k

cell k-1 cell k cell k+1

d(structk)
d(structk-1)

d(chemk)
d(chemk-1)

d(chemk)
d(chemk+1)

d(chemk)
d(chemk)

d(chemk)
d(structk)

d(structk)
d(structk+1)

d(structk)
d(structk)

d(structk)
d(chemk)

Figure: From Paxton et al. 2013, ApJs, 208, 4. Black dots are non-zero entries.
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Numerical Methods: Algorithm
• MESA solves simultaneously the fully coupled set for

the structure and composition;
• Henyey code: varies all the quantities in each zone until an acceptable

solution is found ( 6= Shooting Method);
• Generalized Newton-Raphson solver (⇒ FIRST ORDER):

0 = F(y) ' F(yi + δyi) = F(yi) +

[
dF(y)

dy

]
i
δyi + O((δyi)

2) ;

δyi ' −
F(yi)[
dF(y)

dy

]
i

⇐

yi+1 = yi + δyi

Fi
gu

re
:F

ro
m

W
ik

ip
ed

ia
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Numerical Methods: NR-Solver Iterations

0 1 2 3 4 5 6 7 8 9
M[M�]

0.0

1.0

2.0

3.0

4.0

5.0

T
[1

07 K
]

M = 9M�, Z = Z�,
custom initial model,
TAMS

1st iter
2nd iter
3rd iter
4th iter
5th iter

Figure: Two models after the end of core hydrogen burning
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What do I do with ? Massive Stars

22 / 24

http://mesa.sourceforge.net/


Wind Mass Loss in Evolutionary Codes

Figure: From Smith 2014, ARA&A, 52, 487S

(Semi–)Empirical
parametric models.

Uncertainties
encapsulated in
efficiency factor:

Ṁ(L,Teff,Z ,R,M, ...)

⇐

ηṀ(L,Teff,Z ,R,M, ...)

η is a free parameter:

η ∈ [0,+∞)
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My current problem:

• I Want to see small effects⇒ need high spatial resolution (⇔
also high temporal resolution);

• I want to see them right-before the SN-explosion⇒ need to deal
with advanced burning stages⇒ Need Large Nuclear Reaction
Network;

Typically:

# cells NZ ∼ 105 − 106

# isotopes Niso ≥ 200
64bit float ∼ 8 bytes

⇒ N ' Nz ×Niso ∼ 108 ⇒
N 2 × (8 bytes) ∼

1017 bytes ∼
108 Gb !!

How can solve it?

Lower Nz &

Fi
g:

C
ar

te
si

us

Thank you for your attention!

24 / 24



My current problem:

• I Want to see small effects⇒ need high spatial resolution (⇔
also high temporal resolution);

• I want to see them right-before the SN-explosion⇒ need to deal
with advanced burning stages⇒ Need Large Nuclear Reaction
Network;

Typically:

# cells NZ ∼ 105 − 106

# isotopes Niso ≥ 200
64bit float ∼ 8 bytes

⇒ N ' Nz ×Niso ∼ 108 ⇒
N 2 × (8 bytes) ∼

1017 bytes ∼
108 Gb !!

How can solve it?

Lower Nz &

Fi
g:

C
ar

te
si

us

Thank you for your attention!

24 / 24



My current problem:

• I Want to see small effects⇒ need high spatial resolution (⇔
also high temporal resolution);

• I want to see them right-before the SN-explosion⇒ need to deal
with advanced burning stages⇒ Need Large Nuclear Reaction
Network;

Typically:

# cells NZ ∼ 105 − 106

# isotopes Niso ≥ 200
64bit float ∼ 8 bytes

⇒ N ' Nz ×Niso ∼ 108 ⇒
N 2 × (8 bytes) ∼

1017 bytes ∼
108 Gb !!

How can solve it?

Lower Nz &

Fi
g:

C
ar

te
si

us

Thank you for your attention!

24 / 24



Numerical Methods: Timestep selection
To choose the next timestep ∆tn+1:

1 vc ≤ vt ∼ 10−4, vc unweighted average over all cells of the
relative variations of log10(R), log10(T ), log10(ρ):

∆tn+1 = ∆tn × g
(

g(vt /vc,n)g(vt /vc,n−1)

g(∆tn/∆tn−1)

)1/4

g(x) def
= 1 + 2 tan−1(0.5(x − 1)) ;

2 extra controls on relative variations of many quantities (Xi ,k ,
εnuc,k , Lk , Teff, etc.);

It is always possible that you need to reduce ∆tn
If MESA fails: first retry then backup

Back
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