

Massive runaways stars:

Probes for stellar physics and dynamics

Mathieu Renzo Amsterdam ⇒ Flatiron, NY

Collaborators:

E. Zapartas, S. E. de Mink, Y. Götberg, S. Justham, R. J. Farmer, R. G. Izzard, S. Toonen, D. J. Lennon, H. Sana, E. Laplace, S. N. Shore, V. van der Meij, ...

NASA, JPL-Caltech, Spitzer Space Telescope

Why are massive stars important?

Nucleosynthesis & Chemical Evolution

Star Formation

Ň

Ionizing Radiation

Supernovae

GW Astronomy

NASA, JPL-Caltech, Spitzer Space Telescope

Why are massive stars important?

Nucleosynthesis & Chemical Evolution

Star Formation

Ň

Ionizing Radiation

Supernovae

GW Astronomy

NASA, JPL-Caltech, Spitzer Space Telescope

~70% of O type stars are in close binaries

(e.g., Mason *et al.* '09, Sana & Evans '11, Sana *et al.* '12, Kiminki & Kobulnicky '12, Kobulnicky *et al.* '14, Almeida *et al.* '16)

How to measure stellar velocities?

Runaway definition

Dynamical ejection from cluster

Extremely massive runaways in 30 Doradus

Binary SN disruption

The majority of massive binary are disrupted Runaway X-ray binaries Massive runaway origins is there a problem ?

Observations of stellar velocities

S AR

INSTITUTE

e Bow shocks

Doppler shifts \Rightarrow

Wavelength

Observations of stellar velocities

ANTON PANNE INSTITUTE

Observations of stellar velocities

ANTON PANNEKOEK INSTITUTE

Section Sectio

movie from DR1

Hipparcos velocity distribution for young (\lesssim 50 Myr) stars, Tetzlaff $\it et al.$ 11,

see also Zwicky 57, Blaauw, 93, Gies & Bolton 86, Leonard 91, Renzo et al. 19a, 19b

Hipparcos velocity distribution for young (\lesssim 50 Myr) stars, Tetzlaff *et al.* 11,

see also Zwicky 57, Blaauw, 93, Gies & Bolton 86, Leonard 91, Renzo et al. 19a, 19b

ANTON PANNEKOEK INSTITUTE

How to measure stellar velocities?

Runaway definition

Dynamical ejection from cluster

Extremely massive runaways in 30 Doradus
Binary SN disruption

The majority of massive binary are disrupted Runaway X-ray binaries

Massive runaway origins ...

... is there a problem

Dynamical ejection from cluster

N-body interactions

(typically) least massive thrown out. Binaries matter...

- Cross section ∝ a² ≫ R²_{*}
- (Binding) Energy reservoir

Poveda et al. 67

..but don't necessarily leave imprints!

Example of dynamical interaction

Credits: C. Rodriguez

××××

🖗 Typical outcome of dynamical interactions

Tighter and more massive binary

e.g., Fujii & Portegies-Zwart 11

Timing of ejection

see also, Poveda et al. 64, Fujii & Portegies-Zwart 11, Banerjee et al. 12, 14

How to measure stellar velocities? Runaway definition

Dynamical ejection from cluster

Extremely massive runaways in 30 Doradus

Binary SN disruption

The majority of massive binary are disrupted Runaway X-ray binaries **Massive runaway origins ...** ... is there a problem ?

ANTON PANNEKOEK INSTITUTE

Cluster ejections

- Happen early on, before SNe
- Can produce faster stars
- Least massive thrown out
- *Gaia* hint: high efficiency dynamical ejection

...Binaries are still important! but might not leave signature

How to measure stellar velocities?

Runaway definition

Dynamical ejection from cluster

Extremely massive runaways in 30 Doradus

Binary SN disruption

The majority of massive binary are disrupted

Runaway X-ray binaries
Massive runaway origins ...

... is there a problem ?

The big dipper

Mizar & Alcor

Most common massive binary evolution

Credits: ESO, L. Calçada, M. Kornmesser, S.E. de Mink

ANTON PANNEKOEK INSTITUTE

Spin up, pollution, and rejuvenation

ANTON PANNEKOEK INSTITUTE

The binary disruption shoots out the accretor

Spin up: Packet '81, Cantiello *et al.* '07, de Mink *et al.* '13 Pollution: Blaauw '93 Rejuvenation: Hellings '83, Schneider *et al.* '15

ě

SN natal kick

Observationally: $v_{\text{pulsar}} \gg v_{\text{OB}-\text{stars}}$

Physically: v emission and/or ejecta anisotropies

SN natal kick

Observationally: $v_{\text{pulsar}} \gg v_{\text{OB}-\text{stars}}$

Physically: ν emission and/or ejecta anisotropies

ANTON PANNE INSTITUTE

NO widowed companion

YES \Rightarrow most remain together with their \Rightarrow most are single and we can't see them...

ANTON PANNEKOEK INSTITUTE

→ most remain together with their widowed companion

...but we can see the "widowed" companions

Renzo et al. 19b

Renzo et al. 19b

Velocity distribution: Runaways

ANTON PANNEKOEK INSTITUTE

Velocity respect to the pre-explosion binary center of mass

Numerical results publicly available at::

Velocity distribution: Walkaways

ANTON PANNEKOEK INSTITUTE

Velocity respect to the pre-explosion binary center of mass

Numerical results publicly available at::

Renzo et al. 19b

Velocity distribution: Walkaways

Velocity respect to the pre-explosion binary center of mass

Numerical results publicly available at::

Renzo et al. 19b

How to measure stellar velocities?

Runaway definition

Dynamical ejection from cluster

Extremely massive runaways in 30 Doradus

Binary SN disruption

The majority of massive binary are disrupted

Runaway X-ray binaries

Massive runaway origins ...

... is there a problem ?

Compact objects in a binary are the exception, **not** the rule

Velocity respect to the pre-explosion binary center of mass

Numerical results publicly available at:

Preliminary: The case of 4U1700-37

 $M\simeq 2.5\,M_{\odot}$, $M_*\simeq 60\pm 10\,M_{\odot}$, $P\simeq 3.4\,{
m days}$, $e\simeq 0.22$, $v\simeq 60\,{
m km}\,{
m s}^{-1}$

van der Meij et al. (incl. MR), in prep.

Preliminary: The case of 4U1700-37

 $M\simeq 2.5\,M_{\odot}$, $M_*\simeq 60\pm 10\,M_{\odot}$, $P\simeq 3.4\,{
m days}$, $e\simeq 0.22$, $v\simeq 60\,{
m km}\,{
m s}^{-1}$

Preliminary: The case of 4U1700-37

 $M\simeq 2.5\,M_{\odot}$, $M_*\simeq 60\pm 10\,M_{\odot}$, $P\simeq 3.4\,{
m days}$, $e\simeq 0.22$, $v\simeq 60\,{
m km}\,{
m s}^{-1}$

van der Meij et al. (incl. MR), in prep.

How to measure stellar velocities?

Runaway definition

Dynamical ejection from cluster

Extremely massive runaways in 30 Doradus

Binary SN disruption

The majority of massive binary are disrupted

Runaway X-ray binaries

Massive runaway origins ... 2

... is there a problem ?

How to measure stellar velocities?

Runaway definition

Dynamical ejection from cluster

Extremely massive runaways in 30 Doradus

Binary SN disruption

The majority of massive binary are disrupted

Runaway X-ray binaries

Massive runaway origins ... 2

... is there a problem ?

Known ejection mechanisms

Cluster ejections

- Happen before SNe
- Can produce high v
- Least massive thrown out
- Gaia hint: high efficiency
- ...Binaries are still important! but might not leave signature

Binary SN disruption

- Most binaries are disrupted
- Determined by SN kick
- Ejects accretor
- $v \simeq v_2^{\text{orb}}$ typically slow
- Leaves binary signature spin up, pollution, rejuvenation

Known ejection mechanisms

Cluster ejections

- Happen before SNe
- Can produce high v
- Least massive thrown out
- Gaia hint: high efficiency
- ...Binaries are still important! but might not leave signature

Binary SN disruption

- Most binaries are disrupted
- Determined by SN kick
- Ejects accretor

Hoogerwerf et al. 01

- $v \simeq v_2^{\text{orb}}$ typically slow
- Leaves binary signature spin up, pollution, rejuvenation

O type stars runaway fraction

ANTON PANNEKOEK INSTITUTE

all stars

runaways

Observational claims: (regardless of origin) $\sim 10\%$

 $\sim \frac{2}{3}$ from binaries

Hoogerwerf et al. 01

Theoretical consensus from binaries:

 $0.5^{+2.1}_{-0.5}\%$

Renzo et al. 19b, De Donder et al. 97, Eldridge et al. 11,

Kochanek et al. 19

O type stars runaway fraction

ANTON PANNEKOEK INSTITUTE

all stars

runaways

Observational claims: (regardless of origin)

Is it really a problem?

- Frame of reference to measure v
- Biases in favor of runaways
- Gaia hint: high efficiency dynamical ejection
- Binary prediction sensitive to SFH

Theoretical consensus from binaries:

 $0.5^{+2.1}_{-0.5}\%$

Renzo et al. 19b, De Donder et al. 97, Eldridge et al. 11,

Kochanek et al. 19

ANTON PANNEKOEK INSTITUTE

Conclusions

Cluster ejections

- Happen before SNe
- Can produce high v
- Least massive thrown out
- Gaia hint: high efficiency
- ...Binaries are still important! but might not leave signature

Binary SN disruption

- Most binaries are disrupted
- Determined by SN kick
- Ejects accretor
- $v \simeq v_2^{\text{orb}}$ typically slow
- Leaves binary signature spin up, pollution, rejuvenation

ANTON PANNEKOEK INSTITUTE

Backup slides

VFTS682: Concordant Picture?

_fR

ANTON PANNEKOEK INSTITUTE

Large error bars compatible with no motion, but best values fit with expectations for dynamical ejection

Izzard et al. 04, 06, 09, 18; de Mink et al. 13; Schneider et al 15

Initial Distributions

Star forming region velocity dispersion

Ň

INSTITUTE

Velocity distribution log-scale

ANTON PANNEKOEK INSTITUTE

Velocity post-main sequence stars

Ň

INSTITUTE

pre-CC mass distribution

pre-CC separation distribution

INSTITUTE

Mass-velocity varying the natal kick

ANTON PANNEKOEK INSTITUTE

