Massive runaway stars:

probes for stellar physics and dynamics

Mathieu Renzo

Collaborators:

E. Zapartas, S. E. de Mink, Y. Götberg, S. Justham, R. J. Farmer, R. G. Izzard, S. Toonen, D. J. Lennon, H. Sana, E. Laplace, S. N. Shore, F. Evans ...

What is a runaway star?

Hipparcos velocity distribution for young (\lesssim 50 Myr) stars, Tetzlaff $\it et al.$ 11,

see also Zwicky 57, Blaauw, 93, Gies & Bolton 86, Leonard 91, Renzo et al. 19a, 19b

What is a runaway star?

Hipparcos velocity distribution for young (\lesssim 50 Myr) stars, Tetzlaff *et al.* 11,

see also Zwicky 57, Blaauw, 93, Gies & Bolton 86, Leonard 91, Renzo et al. 19a, 19b

Two ways to produce fast massive stars

Binary supernova disruption

Dynamical ejection from cluster

Massive runaway origins is there a problem ?

Most common massive binary evolution

Credits: ESO, L. Calçada, M. Kornmesser, S.E. de Mink

Spin up, pollution, and rejuvenation

The binary disruption shoots out the accretor

Spin up: Packet '81, Cantiello *et al.* '07, de Mink *et al.* '13 Pollution: Blaauw '93 Rejuvenation: Hellings '83, Schneider *et al.* '15

What exactly disrupts the binary?

6

What exactly disrupts the binary?

NO

⇒ most remain together with their widowed companion

YES

 \Rightarrow most are single and we can't see them...

NO

 \Rightarrow most remain together with their widowed companion

YES

 \Rightarrow most are single and we can't see them...

...but we can see the "widowed" companions 7

Kicks do not change companion velocity

Velocity distribution: Runaways

Velocity respect to the pre-explosion binary center of mass

Numerical results publicly available at:

Renzo et al. 19b

http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

Velocity respect to the pre-explosion binary center of mass

Numerical results publicly available at:

http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

Velocity distribution: Walkaways

Under-production of runaways because

Velocity respect to the pre-explosion binary center of mass

Numerical results publicly available at:

http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

Summary of ejection mechanisms

Binary SN disruption

- · Ejects initially less massive star
- Requires SN kick
- Final $v \simeq v_2^{\text{orb}}$
- Most binaries are disrupted
- Leaves binary signature fast rotation, He/N enrichment, lower apparent age

Binary supernova disruption

Dynamical ejection from cluster

Massive runaway origins is there a problem ?

Dynamical ejection from cluster

N-body interactions

(typically) least massive thrown out. Binaries matter...

- Cross section $\propto a^2 \gg R_*^2$
- (Binding) Energy reservoir

Poveda et al. 67

...but don't necessarily leave imprints!

Credits: C. Rodriguez

Typical outcome of dynamical interactions

Tighter and more massive binary

e.g., Fujii & Portegies-Zwart 11

Binary supernova disruption

Dynamical ejection from cluster

Massive runaway origins is there a problem ?

Binary SN disruption

- Ejects initially less massive star
- Requires SN kick
- Final $v \simeq v_2^{\text{orb}}$
- Most binaries are disrupted
- Leaves binary signature fast rotation, He/N enrichment, lower apparent age

Cluster ejections

- Happen early on, before SNe
- Can produce faster stars
- · Least massive thrown out
- *Gaia* hint: high efficiency dynamical ejection

...Binaries are still important! but might not leave signature

Binary SN disruption

- Ejects initially less massive star
- Requires SN kick
- Final $v \simeq v_2^{\text{orb}}$
- Most binaries are disrupted
- Leaves binary signature fast rotation, He/N enrichment, lower apparent age

Cluster ejections

- Happen early on, before SNe
- Can produce faster stars
- · Least massive thrown out
- Gaia hint: high efficiency dynamical ejection

Hoogerwerf et al. 01

...Binaries are still important! but might not leave signature

Relative efficiency ?

 $\sim \frac{2}{3}$ of runaways from binaries

O type stars runaway fraction

O type stars runaway fraction

Is it really a problem?

- Frame of reference to measure v
- Biases in favor of runaways
- Gaia hint: high efficiency dynamical ejection
- Binary prediction sensitive to SFH

Summary of ejection mechanisms

Binary SN disruption

- Ejects initially less massive star
- Requires SN kick
- Final $v \simeq v_2^{\text{orb}}$
- Most binaries are disrupted
- Leaves binary signature fast rotation, He/N enrichment, lower apparent age

Cluster ejections

- Happen early on, before SNe
- Can produce faster stars
- · Least massive thrown out
- Gaia hint: high efficiency dynamical ejection

...Binaries are still important! but might not leave signature

Backup slides

VFTS682: Concordant Picture?

Large error bars compatible with no motion, but best values fit with expectations for dynamical ejection

Renzo et al. 19a

Methods: Population Synthesis

Fast \Rightarrow Allows statistical tests of the inputs & assumptions

Star forming region velocity dispersion

Renzo et al. 19b

Mass-velocity varying the natal kick

How far do they get?

Renzo et al. 19b

Where do they die?

for $M \ge 7.5 M_{\odot}$: $\langle D \rangle = 128 \text{ pc}$ $\langle D_{\text{run}} \rangle = 525 \text{ pc}$ $\langle D_{\text{walk}} \rangle = 103 \text{ pc}$

Compact objects in a binary are the exception, not the rule

SN natal kick

Observationally: $v_{\text{pulsar}} \gg v_{\text{OB-stars}}$

Physically: ν emission and/or ejecta anisotropies

Credits: C. D. Ott, S. Drasco

Timing of ejection

Most ejections happen early Before the first stellar core-collapse

Very sensitive to initial conditions

from Oh & Kroupa 16,

see also, Poveda et al. 64, Fujii & Portegies-Zwart 11, Banerjee et al. 12, 14