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LISA can see Galactic double white dwarfs formed via common envelope

4

LIGO/Virgo⇒

⇐ PTA

Robson et al. 2019



Common Envelope Evolution

Is not GW-driven!
But GW passively trace the dynamics



Common envelope evolution in one slide
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Common envelope evolution in one slide

5
Example from Ivanova et al. 13b

Ginat et al. 2020

Plunge-in might be detectable

Loud but short and rare
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How many sources do we expect?

NCE = RCE,init × ∆tCE



How many sources do we expect? NCE = RCE,init × ∆tCE
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−0.09 (0.06+0.03

−0.02)

c.f. LRN rate ∼ 0.3 yr−1

Kochaneck et al. 14, see also Howitt et al. 20

Duration (in band) is very uncertain

∆tCE ' 10−2 − 105 years

(e.g., Meyer & Meyer-Hofmeister 79, Fragos et al. 19, Igoshev et al. 20,

Chamandy et al. 20, Law-Smith et al. 20)

⇐

0 . NCE . 1000
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Could we detect something?



Could we see it? An answer not relying on a specific model
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Would we recognize GWs from
common envelope?



“Stealth bias” assuming GR in vacuum: chirp mass

−4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0
log10( fGW/[Hz])

−20

−19

−18

−17

−16

−15

−14

−13

−12

lo
g 10

(|
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EM counterparts:
• Optical/IR

transients
(Blagorodnova et al. 20)

• “weird” red
giant star
(Clayton et al. 17)

Renzo, Callister et al. 21



Can LISA see common-envelope events? Maybe!

9

• ∼ One CE-begin per 10 yr

• 0 . NCE . 1000

• if stalls at short separation
they might detectable

⇐

Direct window on the inside

If non-detection

• stalls at large separation

and/or

• stalling phase is short
−4.0 −3.5 −3.0 −2.5 −2.0 −1.5

log10( fGW/[Hz])

−20

−18

−16

−14

−12

−10

−8

−6

lo
g 10

(|
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Outline

Future: LISA detection of GW from a Galactic common envelope

Present: LIGO/Virgo BH masses and pulsational pair instability



Gravitational wave mergers offer an unprecedented view on massive BHs
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Part 1: Life and death of the most massive black-hole progenitors
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Part 2: Making forbidden black holes ?
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Part 1: Life and death of the
progenitors of BHs . 45 M�

(Pulsational) pair instability evolution



Pair-production happens in the interior† after carbon depletion

13
† can be off-center



Simulating the He core captures the important dynamics

13

H-rich envelope can be lost to:

• winds

• binary interactions

• first pulse

He cores computed with



Isolated binary evolution removes the H-envelope anyways

14
Marchant, Renzo et al. 2019



Pair-instability SNe are the best understood supernovae

see Fowler & Hoyle 1964, Rakavy & Shaviv 1967, Barkat et al. 1967, 1968, Fraley 1968,

Glatzel et al. 1985, Woosley et al. 2002, 2007, Langer et al. 2007, Chatzopoulos et al. 2012, 2013, Yoshida et al. 2016,

Woosley 2017, 2019, Marchant, Renzo et al. 2019, Farmer, Renzo et al. 2019, 2020, Leung et al. 2019, 2020,

Renzo et al. 2020a,b, Croon et al. 2020a,b, Sakstein et al. 2020, Costa et al. 2021, Woosley & Heger 2021, etc...

Radiation pressure dominated:
Ptot ' Prad

MHe & 32 M�

Renzo, Farmer et al. 2020b



γ γ→ e+ e−

Renzo, Farmer et al. 2020b
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BH

no BH

BH
Renzo, Farmer et al. 2020b



Resulting stellar BH masses

16

∼ 125 M�

∼ 45 M�

Renzo, et al. 2020b, see also Woosley et al. 2002, 2007, Woosley 2017, 2019, Marchant et al. 2019, Leung et al. 2019, Farmer et al. 2019, 2020,

Stevenson et al. 2019, Spera & Mapelli 2019, van Son et al. 2020, Costa et al. 2021, Woosley & Heger 2021



Weak dependence on primordial metallicity

17

Focus on lower edge of the gap

Farmer, Renzo et al. 2019, see also Woosley & Heger 2021

∆ max{MBH} ∼7%
over 2.5 orders of magnitude

Comparable or smaller effects:

resolution, winds, overshooting, neutrino cooling, αMLT, etc..



Weak dependence on primordial metallicity

17

Focus on lower edge of the gap

Farmer, Renzo et al. 2019, see also Woosley & Heger 2021

∆ max{MBH} ∼7%
over 2.5 orders of magnitude

Comparable or smaller effects:

resolution, winds, overshooting, neutrino cooling, αMLT, etc..

max(MBH) below the gap robust
&

∼ constant throughout the Universe

⇐

Standardizable siren?



The dominant uncertainty is the 12C(α, γ)16O rate

18

Change in 12C/16O ratio

⇐

different C-shell behavior and CO core mass

The lower edge of the gap can give
GW constrain on nuclear rates...

...if 2nd+ generations don’t pollute it too much

⇐ lower rate higher rate⇒
Farmer, Renzo et al. 2020, see also Takahashi 2018, Farmer, Renzo et al. 2019, Costa et al. 2021, Woosley & Heger 2021



The feature at ∼ 40 M� suggests PPI happens in nature

19
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A feature between ∼ 30 M� and ∼ 60 M�
is favored in all fitting models

Abbott et al. 2020b, Talbot & Thrane 2018



The feature at ∼ 40 M� suggests PPI happens in nature

19
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”
97.1+1.7

−3.4% have m1 < 45 M�

⇐

How to form the others ?

Abbott et al. 2020b, Talbot & Thrane 2018



Part 2: Making forbidden BHs ?

The “stellar merger” scenario



The “stellar merger scenario”

20

• Make a star with a small core and
oversized envelope to avoid PPISN

• Collapse it to a BH in the gap

• Pair it in a GW source with dynamics

di Carlo et al. 20a See also Spera et al. 19, di Carlo et al. 19, 20b, see also Kremer et al. 20, Mapelli et al. 20, Renzo et al. 20c



Four challenges of the “stellar merger scenario”

20

• Mass loss (and rejuvenation) ?Assumed zero

• Wind and eruptions ?Assumed zero

• Loss of envelope at core-collapse ?
Because of ν losses – Assumed zero

see Nadhezin 1980, Lovegrove & Woosley 2013

• Need dynamics to pair with 2nd BH

⇐

Requires nuclear cluster and/or AGN disk?

di Carlo et al. 20a See also Spera et al. 19, di Carlo et al. 19, 20b, see also Kremer et al. 20, Mapelli et al. 20, Renzo et al. 20c



Part 2: Making forbidden BHs ?

Oversimplified MESA mergers



Merger model: the pre-merger stars
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Z = 2× 10−4

58 M�

42 M�

Renzo, Cantiello et al. 20



Merger model: composition of the merger
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Merger products are He-rich and blue⇒ envelope instabilities?
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Very massive stars are hardly stable

• ∼ 105 years in S Dor instability strip

• reach core-collapse as BSG

⇐

• LBV eruptions, helped by He opacity?
Jiang et al. 18
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Part 2: Making forbidden BHs ?

Envelope fate at BH formation



Do BHs form via a failed, weak, or full blown SN explosion?

23∆Eν ' 1053 erg

Possible causes for mass ejection at BH formation:

• ν-driven shocks
Nadhezin 1980, Lovegrove & Woosley 2014, Fernandez et al. 2018,

Ivanov & Fernandez 2021

• Jets and disk wind
(even without net rotation)

Gilkis & Soker 2014, Perna et al. 2018, Quataert et al. 2019

• (weak) fallback powered explosion
Ott et al. 2018, Kuroda et al. 2018, Chan et al. 2020, Powell et al. 2021

see also Adams et al. 2017 for possible EM counterpart to BH formation



Accretion disks and ν-driven shocks remove little mass for BSG

24

MBH,0 ' Mcore − Eν/c2

r

rc

t� > ��

t� < ��

falls to BH
quickly

feels change in g

Fernàndez et al. 2018

MESA→ GR1D+FLASH credits: R. Fernàndez

Nadhezin 1980, Lovegrove & Woosley 2013, Piro et al. 2013, Coughlin et al. 2018, Fernàndez et al. 2018, Ivanov & Fernàndez 2021



Can convective random motion cause disk formation and collapsar?

0 50 100
time from onset CC [s]

1014

1016

1018

1020

1022

Sp
ec

ifi
c

A
M

j[c
m

2
s−

1 ]

mix

jISCO, DD2
jISCO, SFHo
jrand

25
c.f. Gilkis & Soker et al. 14, Quataert et al. 19
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Not enough in non-rotating models
But the merger process might inject AM



Conclusions



Future: LISA might detect Galactic CE
(or rule out existing models with non-detections)
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ḟGW Measurable

Present:
GW detections of BBHs... ...provide first uncontroversial evidence for PPI
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...provide first uncontroversial evidence for PPI
Present:

GW detections of BBHs...

⇒ require dynamics and, if merging stars,
unperturbed core & full envelope fallback

but better stellar merger models needed



Backup slides



Dynamical phases are loud but short and thus rare

Requires massive donor
star

Ginat et al. 2020



Rate of common-envelope initiation with pre-CE separation
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“Stealth bias” assuming GR in vacuum: chirp mass & distance
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ḟGW Measurable

vacuum GR
0

1

2

3

4

5

lo
g 10

(M
c/

[M
�

])

−4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0
log10( fGW/[Hz])

−20

−19

−18

−17

−16

−15

−14

−13

−12

lo
g 10

(|
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Most common envelope events cross the LISA band

“LISA frequency range”
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The estimated radiation-driven mass loss is not significant
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(higher Z ⇒ higher κ ⇒ higher Ṁ)
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“Impostor” GW events: High eccentricity merger? Lensing?
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