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Summary

Mass loss is of paramount importance for the lives of massive stars. It influences their
evolution, and changes their final fate (successful supernova explosion of different types,
or collapse), and remnant (neutron star or black hole). Two broad categories of mass loss
mechanisms are expected for massive stars: (i) radiatively driven stellar winds; (ii) extreme
events (e.g. eruptions, pulsational instabilities, wave driven mass loss). The latter could, in
principle, strip away large fractions of a star’s mass in a very short time. In a binary system,
Roche Lobe Overflow is another mass loss mechanism from the point of view of the primary
star.

However, because of its intrinsically dynamical nature, and because of the strong non-
linearity of the responsible physical processes driving it, mass loss is one of the largest
sources of uncertainty in the simulation of massive star evolution.

In most stellar evolution simulations, only wind mass loss is included through parametric
algorithms obtained as combinations of different formulae for each phase of the evolution.
These formulae express the mass loss rate as a function of an (arbitrarily) chosen set of stel-
lar parameters, Ṁ ≡ Ṁ(L, Teff, Z, ...), and have empirical or theoretical grounds. Moreover,
it is common practice to use an efficiency factor η, whose (positive) value is not unique (and
lacks a direct physical interpretation derived from first principles). η modifies the rate to
account for possible biases in the mass loss rate determination (e.g. potential overestimation
due to the assumption of homogeneity in the observed wind structures). Although it may
be dominant in terms of the total mass shed, mass loss from eruptive events is commonly
neglected. These events are particularly difficult to model both because of the uncertainties
in the driving process(es) and because of their inherent short timescales and multidimen-
sionality.

This thesis attempts to understand and constrain the uncertainties connected to mass
loss in the evolution of massive stars in the (initial) mass range between 15M� and 30M�.
This is done by computing a grid of stellar models with the open-source stellar evolution
code MESA, modified to include some mass loss algorithms, customized stopping criteria
and stricter timestep controls. I carried out several simulations with varying initial masses
and differing only in the wind algorithms and efficiencies, and compare the output. I then
perform a simplified numerical experiment to simulate mass stripping in a 15M� star, to
study how its structure and evolution change with the removal of portions of its envelope
at different moments in its evolution. In a simplified way, this mass stripping procedure
mimics eruptive, violent events, or possibly Roche Lobe Overflow in a binary.

The use of different wind mass loss scheme produces significant disagreement among the
simulated evolutionary tracks. I show that, although the mass loss algorithms compared are
just, in principle, different parametrization of the same physical phenomenon, they are not
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equivalent. The uncertainty on mass loss increases at higher initial masses and the η factor
has a strong influence on the results.

The stripped models obtained by artificially removing different portions of the hydrogen-
rich envelope of a star at different moments of its evolution all have the same core structure
(i.e. the mass stripping at the moment chosen does not influence the core structure), but
significant differences are found at intermediate masses. I also find significant variation in
the density gradient within the hydrogen-rich envelope that remains at the onset of core
collapse.

In Chapter 1, I review the importance of massive stars in the broad context of astro-
physics, and outline the standard picture of their evolution. Then, I present the current
challenges encountered in the numerical modelling of these stars with one-dimensional stel-
lar evolution codes. Finally, I discuss the possible mass loss channels for massive stars and
review the mass loss algorithms commonly used to model steady wind mass loss. Signa-
tures of stellar winds which allow observational determinations of the mass loss rate are
discussed too.

In Chapter 2, I review the basics of the MESA code, and present the customized routines
that I implemented for this work. I also describe the setup of the simulations in detail, with
the explicit aim of providing all the information needed to reproduce the results. Chap-
ter 2 also contains the description of the simplified procedure to simulate a violent, short,
eruptive mass loss event or an envelope stripping caused by a companion star, and the ad-
vantages and shortcomings of this method.

In Chapter 3, I present my grid of models to compare, in a systematic way, the vari-
ous wind mass loss algorithms. I compare separately the algorithms for each evolutionary
phase, and I discuss the different resulting evolutionary tracks and final characteristics of
the stellar structures.

In Chapter 4, I discuss the results of the simplified model for an envelope shedding mass
loss event in a 15M� star, such as may arise from pulsational or wave driven mass loss
events, or in the evolution of a binary system when the primary star increases its radius. I
compare the outcome of the simplified procedure adopted to remove the envelope to the
unstripped reference model, and discuss the pre-supernova structures resulting from these
simulations.

Chapter 5, summarizes the main results and suggests possible observational probes and
further research directions to better understand the uncertainties in massive stars mass loss.

Appendix A contains the routines implemented for this work, and the MESA parameter
files used. Appendix B is a discussion of some of the computational issues encountered in
this work.

Key words: massive stars – stellar evolution – mass loss – stellar winds – numerical simula-
tions.
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“The best things in life aren’t things”
[Unknown on a wall somewhere]
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CHAPTER 1

Introduction

[...] it is reasonable to hope that in the not too distant future we shall be competent to understand so
simple a thing as a star.

[A. Eddington, The Internal Constitution of Stars, 1926]

1.1 The Importance of Massive Stars

According to the usual definition, “massive stars” are those with zero age main sequence
(ZAMS, see §1.2 for the definition) mass MZAMS sufficiently large to form a degenerate oxy-
gen/neon or iron core at the end of their globally hydrostatic evolution [1]. Typically, this
means 8− 10 . MZAMS/M� . 150− 200. Both limits depend on the initial condition (es-
pecially the initial metallicity Z of the star, the values cited are for solar metallicity [1]), and
they are still not well known because of the large uncertainties involved in modeling the
evolution of such stars.

Because of their large mass, theses stars are rather rare objects: they seldom form and
are short lived. Nevertheless, their characteristics (e.g. high luminosity, large mass loss
rate, complex nuclear burning, final fate, etc.) make them extremely important for many
sub-fields of astrophysics. For example, because of their high luminosity, they are the only
stars that can be observed in outer galaxies. They are paramount for the early universe
re-ionization [2] and they create HII regions due to their ionizing radiation; the nuclear
processes in their interiors are responsible for the production of most of the isotopes up to
the iron group (e.g. [1, 3, 4], see also below), and their winds and/or final explosion as su-
pernova (SN) release the matter processed by nuclear reactions, chemically enriching the
interstellar medium (ISM, see e.g. [5]). Their winds also input momentum into the ISM,
blowing giant bubbles and possibly triggering star formation [6, 7]. Their explosions too
input momentum into the ISM, which can sweep away the surrounding matter and thus
damp further star formation. In their final gasps of life, their cores become the environment
for the interplay of a large number of fundamental physical phenomena: weak interaction
enters because of neutrino cooling and electron captures [8], strong interaction and electro-
magnetic interaction are involved in the nuclear processes (e.g. [9–12]). Finally, when the
central nuclear engine shuts down because of the lack of fuel, and nothing can sustain the
core, gravitational collapse ensues, and gravity drives the dynamics (e.g. [13, 14]). The col-
lapse can trigger one of the most energetic phenomena in the universe, a SN, and create a
black hole (BH) or a neutron star (NS) [15, 16]. All these reasons make the study of massive
stars an interesting and important topic.
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CHAPTER 1. INTRODUCTION

The structure of the star at the onset of core-collapse strongly influences the final fate
of the star, in ways that are a current research topic (see, e.g. [14–19]). But of course, the
structure at the onset of collapse itself is the result of the previous evolution, during the
globally hydrostatic and thermal equilibrium stages of core and shell nuclear burning.

1.2 Evolution of a Single Massive Star

Although virtually all massive stars are observed to be in binary (or multiple) systems, and
nearly ∼ 70% are expected to interact with their companion star [20], most modeling still
relies on numerical simulations of single isolated stars. The nature of the interaction(s) be-
tween the binary companions and the precise moment it becomes relevant for the stars de-
pend on the parameters of the binary system. The goal of this section is to give a qualitative
outline of the evolution of a single massive star, according to current stellar evolution theory
for non-rotating stars. The aim is to outline the various evolutionary stage for further ref-
erence. I do not discuss the formation of massive stars. The reader is referred to [21–24] or
any other stellar astrophysics textbook for more details.
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Figure 1.1: Theoretical HertzsprungRussell (HR) diagram (i.e. (−Teff,L) plane) for a 15 M�,
Z = Z� ≡ 0.019 [25] stellar model computed with MESA (see §2.1). The red dot indicates
the terminal age main sequence, where the abundance of hydrogen in the core is Xc < 0.01
(TAMS), the red triangle indicates He exhaustion in the core (central abundance of helium
Yc < 0.01). The labels MS, OC, SGB, RSG stand for Main Sequence, Overall Contraction,
SubGiant Branch and Red SuperGiant, respectively. The duration of each stage is indicated.
The legend indicates the wind mass loss scheme employed, see §1.4.

As for all stars, massive stars are globally hydrostatic and at thermal equilibrium, self-
gravitating, gaseous structures. Their evolution is governed by the consumption of nuclear
fuel in the inner regions, which balances the energy loss from the surface with the energy
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CHAPTER 1. INTRODUCTION

released from nuclear reactions. For any reasonable initial composition, the first nuclear
fuel is hydrogen, and, usually, the evolution of the star is simulated from the so-called zero
age main sequence (ZAMS). This is the moment when the star is supported by core hydro-
gen fusion and the abundances of the catalytic nuclei1 have reached constant values. How-
ever, common variations of this definition may be adopted for computational purposes (e.g.
defining the ZAMS as the point of the evolution where 99% of the luminosity comes from
hydrogen burning).

Table 1.1: Indicative duration of several core burning phases for different initial mass
MZAMS. I consider each phase to begin at the end of the previous one (i.e. the shell burn-
ing/inert core phase duration is included in the next burning phase) and to end when
the abundance of all the isotopes of the burning specie drops below 0.01. The data come
from MESA (see §2.1 and references therein) simulations using a 21-isotope nuclear network
(approx21.net). See also §1.3.2, and §B for more details.

Core Burning duration [yrs]
MZAMS [M�] 15 20 25 30

H ∼ 1.29×107 ∼ 8.93×106 ∼ 7.05×106 ∼ 5.98×106

He ∼ 1.18×106 ∼ 8.63×105 ∼ 7.00×105 ∼ 6.06×105

C ∼ 4.04×104 ∼ 2.58×104 ∼ 2.13×104 ∼ 1.73×104

Ne ∼ 1.76×102 ∼ 2.89×101 ∼ 1.14×101 ∼ 3.96×100

O ∼ 1.25×100 ∼ 4.36×10−1 ∼ 5.56×10−3 ∼ 3.14×10−1

Si ∼ 1.39×10−1 ∼ 2.66×10−2 ∼ 3.61×10−2 ∼ 1.03×10−1

Total ∼ 1.41×107 ∼ 9.82×106 ∼ 7.78×106 ∼ 6.60×106

1.2.1 Main Sequence Evolution

The main sequence is the longest evolutionary stage of any star, during which hydrogen
is processed in the core, and there are no other nuclear reaction chains. In massive stars,
because of the high central temperature, hydrogen is consumed via the CNO cycle [14]. The
virial theorem2 in the case of hydrostatic equilibrium (Ï = 0, where I is the momentum of
inertia) states that

2K+ U = 0 , (1.1)

where K is the total kinetic energy, and U the potential energy. The latter can be expressed
as (except for a dimensionless order unity constant depending on the details of the mass
distribution)

U ∼ −GM2

R
∼ −GM2〈ρ〉1/3

M1/3 , (1.2)

where I introduce the mean density 〈ρ〉 = M/(4πR3/3) in order to eliminate the radius.
The kinetic energy K can be expressed (apart from constants of order unity depending on

1The catalytic nuclei are those which are both produced and destroyed in the nuclear reaction chains through
which the matter is processed.

2The virial theorem can be applied to stars since these are globally in thermal equilibrium.
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CHAPTER 1. INTRODUCTION

the details of the chemical composition) as

K ∼ kb〈T〉N ∼ kb〈T〉
M
〈µ〉mp

, (1.3)

where kb is the Boltzmann constant, mp is the proton mass, 〈〉 indicate quantities averaged
over the entire star, N is the total number of particles, expressed as the total mass M di-
vided by the mass of a “mean particle” and µ is the mean molecular weight, which, for a
completely ionized gas, corresponds to

µ = ∑
i

1
Xi

Zi+1
Ai

, (1.4)

where Xi is the abundance of the i− th isotope, Zi is number of electrons (equal to protons),
and Ai the total number of nucleons. Thus, µ can be interpreted as the inverse of the total
number of particles (Zi electrons plus one nucleus), per unit of baryonic mass. Substitu-
ing Eq. 1.2 and Eq. 1.3 into Eq. 1.1, it is easily found that the average temperature 〈T〉 is
proportional to

〈T〉 ∝ M2/3〈ρ〉1/3〈µ〉 . (1.5)

Thus, the more massive the star, the higher its average temperature 〈T〉 and its central tem-
perature Tc. Since the energy generation rate per unit mass of the CNO cycle (εCNO) is a
stiffer function of the temperature than the energy generation rate per unit mass of the other
hydrogen burning cycle (the PP chain) [22],

εCNO ∝ ρ2T18 cf. εPP ∝ ρ2T4 , (1.6)

Eq. 1.5 explains why the CNO cycle is the dominant channel for hydrogen burning in
massive stars3. The caveat is that C, N and O (which are among the most abundant metals
in the universe, [3, 4]) must be present in the initial composition [24]. In other words, the
CNO cycle has a peculiar dependence on the metallicity Z, while the PP-chain does not
depend on the presence of nuclei heavier than helium.

Because of the strong dependence of εCNO on T, during core hydrogen burning, the nu-
clear processing happens only in the hottest central region, and its extent is quite small
compared to the pressure scale height. Therefore, in the central regions the temperature
gradient is large and the core is convective, while the outer envelope is radiative, cf. Fig. 1.2.
Convective mixing flattens the chemical abundances in the entire convective region (which
is larger than the burning region), and it provides hydrogen fuel to the burning core from a
region much larger than where T is enough for nuclear burning to occur.

During its main sequence evolution, the star climbs the HR diagram, increasing its lu-
minosity and consuming the hydrogen in the entire convective core. Since the cross section
for photon interactions with (ionized) helium is smaller than the cross section for interac-
tions with hydrogen (i.e. free protons and electrons in a completely ionized medium such as
the stellar core), the consumption of hydrogen and the corresponding production of helium
cause a decrease in the opacity κ in the entire convective region. The lower opacity decreases
the radiative gradient, and this in turn partially stabilizes the outer convective region. Fur-
thermore, the decreased amount of hydrogen fuel requires an higher density of the core to
provide the same energy generation rate. Therefore, the core tend to contract and increase
its temperature and luminosity L, and the envelope responds expanding slightly.

3Note that the exact dependence of ε ≡ ε(T) is not a power law, and the approximate exponent depends on
the density and temperature range.
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Figure 1.2: Schematic structure of the star of Fig. 1.1 during the main sequence (at t ∼
1900 years after ZAMS). The radius of the wedge is proportional to the total mass, the red
region is convective, while the yellow region is radiative.

1.2.2 The “Overall Contraction” and the Subgiant Branch

When the star reaches the red dot in Fig. 1.1, a helium-rich core is formed, and hydrogen
is depleted in the center. This condition can be taken as the formal definition of the end of
the main sequence. The locus of the HR diagram points corresponding to this condition for
different sets of initial parameters (MZAMS, Z, etc...) is usually referred to as the “Terminal
Age Main Sequence” (TAMS).

Because of the convective mixing in the core during main sequence evolution, hydrogen
is depleted in a region much larger than the region where T is high enough to trigger nuclear
reactions. Therefore, when the star reaches the red dot in Fig. 1.1, it lacks fuel not only in
its center, but in a region large enough that the ignition of further nuclear reactions cannot
be smooth and immediate. There is a short phase of homologous “overall contraction”(OC),
during which the star shrinks in radius and increases its temperature until it is able to ignite
hydrogen burning in a shell at the helium core’s edge (e.g. [22]).

The hydrogen shell is an off-center nuclear power source. When it turns on, the envelope
above the shell starts inflating and cooling. Thus, the star moves across the HR diagram
roughly at constant luminosity. The corresponding horizontal track on the HR diagram is
often called the “Sub-Giant Branch” (SGB), and it is identified, from the observational point
of view, as the so-called Hertzsprung gap. The time spent in this expansion phase is much
shorter (. 105 years) than both the main sequence duration and the subsequent red super-
giant (RSG) phase (see Fig. 1.1). This is the reason for the small number of stars observed in
this phase. During the SGB, the star inflates and cools so much that the temperature gradi-
ent becomes steeper and steeper in order to connect the high temperature (for the 15M� star
of Fig. 1.1, TH shell ∼ few× 107 K) of the shell with the low temperature at the surface of the
envelope (Teff ∼ few× 103 K). The low temperature at the outer boundary of the envelope
causes the onset of convection.

As the extent of the convective envelope grows, the stellar envelope becomes similar to a
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CHAPTER 1. INTRODUCTION

homogeneous convective structure, whose place on the HR diagram would be the Hayashi
track (e.g. [22]). Thus the stellar track on the HR diagram bends and the star enters the RSG
phase.

1.2.3 Post-SGB Evolution

During the SGB (and at least also during the beginning of the RSG) evolutionary stage, the
envelope is supported by hydrogen shell burning, and the inert core below it, which is made
mainly of helium, contracts and grows in mass because of the ashes of the shell. Above
the shell, there is a relatively small radiative region separating the burning shell from the
convective portion of the envelope. Its extent depends on the total mass of the star, and the
details of the treatment of convection. The radiative layer exists because convection in the
envelope is driven by the low temperature at the outer boundary, not by the extreme energy
output of the shell itself. Thus, in the region just above the shell, radiative processes are
sufficient to carry the energy flux out. In massive stars, the helium core is never supported
by electron degeneracy pressure because of its high temperature, and the ignition of helium
below the hydrogen shell happens relatively quickly during (or even before) the RSG phase,
depending on the total mass.
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Figure 1.3: Average binding energy per nucleon as a function of the atomic mass number A.
The red arrow indicates the direction in which nuclear fusion proceeds, producing heavier
and more tightly bound nuclei. The green arrow indicates the direction in which nuclear
fission proceeds, breaking heavy nuclei into more tightly bound pieces. The yellow box
around 56Fe indicates the so-called “iron group” nuclei, with 52 ≤ A ≤ 62 . The data
are from http://www.einstein-online.info/spotlights/binding_energy-data_file/

index.txt/view .

Helium burning takes place in the inner core, below the hydrogen shell, and is much
faster than the previous core hydrogen burning. In general, the higher the mass of the ele-
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ment being burned, the lower the energy release per nucleon. Hydrogen burning releases
∼ 7 MeV nucleon−1, [26], while silicon burning (which is the last burning stage) releases
only ∼ 0.1 MeV nucleon−1, [9]. This can be easily understood by looking at Fig. 1.3, which
shows the average nuclear binding energy per nucleon B/A: the energy released by nuclear
fusion is roughly4 the difference between the binding energy of the final products minus that
of the initial nuclei. As the number of nucleons A approaches Amax ' 56, this difference be-
comes progressively smaller and the energy release per nucleon diminishes. Thus, during
advanced burning stages, the core temperature needs to increase, to increase the nuclear re-
action rates, and sustain the star through nuclear fusion. Moreover, at the high temperatures
occurring in late burning stages, thermal neutrinos (from pair production, bremsstrahlung,
electron-positron annihilation and/or any other non-nuclear process, [27]) add another en-
ergy loss term that must be balanced by the nuclear reaction energy release, further speeding
up the evolution. Thus, heavier elements burn and are depleted faster, as Tab. 1.1 illustrates.

While the evolutionary track before helium ignition is (at least qualitatively) well estab-
lished, what happens subsequently is harder to follow on the HR diagram. The evolutionary
track can depart significantly from the cool RSG track depending on the physical processes
included in the simulation (rotation, mass loss rate, mixing, etc.). In the example shown in
Fig. 1.1, the star remains a RSG until the onset of core collapse, but other models (see §3 and
§4) may evolve toward higher temperatures (the so called blue loop), and end their life as
yellow or blue supergiants (YSG or BSG, respectively), or they can return to the cool side of
the HR diagram after a blue loop. This blueward evolution can be triggered by many differ-
ent physical processes, such as mass loss removing the cold extended envelope and reveling
the hotter inner regions, chemical mixing bringing heavier nuclei toward the surface, etc.
(see also [28] and references therein).

A better understanding of the physics triggering the blueward evolution is required for
the solution of the so-called “Red Supergiant problem”, [29]. This concerns the unknown
fate of massive stars in the mass range 16M� . MZAMS . 30M�. For stars in this mass
range, evolutionary models (computed with standard assumptions, especially for Ṁ) pre-
dict evolution to RSG with extended hydrogen-rich envelopes (e.g. [14, 29]). These are ex-
pected to die as Type IIP core-collapse SNe (see §1.2.4 and §1.2.5). However, the upper limit
for the progenitor mass for observed SN of this type is only of∼ 16M� [29], which raises the
question of what the final fate is for stars of 16M� . MZAMS . 30M� that are not massive
enough to shed their hydrogen envelope (within the standard set of assumptions of stellar
astrophysics), [30], but that do not end their life as predicted by theory.

While the surface properties of massive stars in late evolutionary stages are still uncer-
tain (see also §2.1.3), the qualitative behavior of their cores is more established. After helium
depletion, the core is made mainly of carbon and oxygen. These become the next nuclear
fuel, with carbon igniting first. Above the carbon-oxygen core, two shell sources exists burn-
ing helium and hydrogen, respectively. During (late) carbon burning, a large fraction of the
energy of the core is carried out by thermal neutrinos produced because of the high temper-
ature reached [27]. This cooling via neutrinos has a complex and yet not well understood
relation to convective instability, which also depends significantly on the initial mass of the
star. This strongly influences the final structure of the core [8]. Moreover, neutrinos leave
the star unimpeded (because of the inherently small weak-interaction cross sections), which
even further accelerates the evolution. This neutrino cooling becomes the dominant energy

4Corrections are needed in order to account, e.g., for the energy that goes into neutrinos, which leave the star
immediately.
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loss process in the late evolutionary stages.
After core carbon depletion, the star contracts and heats again, until it ignites neon

(through photodisintegrations), and then oxygen, and finally silicon. Each fuel type is made
of the ashes of the previous burning stages. For every new element processed in the core, a
shell of the old type of fuel ignites above it, leading to the characteristic pre-SN onion-skin
structure, see Fig. 1.4.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
M [M�]

H rich

He rich

C rich
O richSi rich

Fe rich

Figure 1.4: Schematic structure of the model of Fig. 1.1 at the onset of core-collapse (see
Eq. 1.9). The radius of each wedge is proportional to its mass. Note that the final mass is
lower than MZAMS(= 15M�) because of the (wind) mass loss. At the interface between each
shell there is a nuclear burning region using the material of the overlying region as fuel.

At the end of silicon burning, the star is left with a core composed of nuclei of the iron
group (mainly iron isotopes), that is too massive to be sustained by electron degeneracy
pressure. This means, [8],

MFe ≥ Meff
Ch ∼ (5.83M�)Y2

e

[
1 +

(
se

πYe

)2
]

(1.7)

where MFe is the mass of the iron core and Meff
Ch is the effective Chandrasekhar mass. In

Eq. 1.7, se is the electronic entropy per baryon in units of the Boltzmann constant kb and

Ye
def
= ∑

i
Xi

Zi

Ai
, (1.8)

is the number of electrons per baryons. The sum runs over all isotopes and the notation is
the same as in Eq. 1.4. Eq. 1.7 yields the usual value MCh ∼ 1.44M� for Ye ∼ 0.5 and se ∼ 0.
The second term in brackets includes the thermal corrections.
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1.2.4 Core Collapse

Since the nuclei of the iron group are the most tightly bound (see also Fig. 1.3), the fusion of
two of them would require energy input greater than the energy released. Therefore, inside
the iron core, fusion reactions cannot compensate the energy loss of the star, and the core is
doomed to collapse. The conventional definition for the onset of collapse [31] is

max{|v|} ≥ 103 [km s−1] , (1.9)

where v is the radial infall velocity. The arbitrary threshold set by Eq. 1.9 is motivated by
the fact that, at this point, the star is a few tenths of seconds (roughly a dynamical timescale)
away from “core bounce” (see below). The central density is so high (ρ & 1010 g cm−3) that
stellar evolution codes usually cannot properly simulate the physics needed (e.g. the high
density regions require a different equation of state - EOS, hydrostatic equilibrium does not
hold any longer, neutrinos start to be trapped because of the higher density and neutrino
opacity). However, this is a purely technical threshold, while in nature the evolution of such
a star is continuous during collapse. Fig. 1.5 illustrates the velocity profile of a 15 M� star at
the onset of core collapse.

During collapse, electron capture reactions, e.g.,

p + e− → n + νe , AZ + e− →A (Z− 1) + νe , (1.10)
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Figure 1.5: Velocity profile for the star in Fig. 1.1 at the onset of core-collapse (left panel)
and at core bounce (right panel). Note the linear behavior of the infall velocity in the inner
core on the left panel. Note also the different scales on the two panels: at the onset of core
collapse, the infall velocity is still subsonic and directed inward (v < 0) everywhere. The
data in the right panel are obtained using the open-source code GR1D, [32], with the data at
the onset of core collapse as input.
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decrease Ye, and diminishing Meff
Ch (see Eq. 1.7), and accelerating the collapse further. To-

gether with positron capture reactions, electron capture reactions form the so-called URCA
processes, responsible for the lion’s share of the cooling (provided by neutrinos) during the
collapse phase. As the infall velocity progressively increases, the core divides into two sep-
arate parts [14]:

• Inner Core: in sonic contact and collapsing self-similarly (i.e. the infall velocity |v| ∝
r). Its mass is given by:

Mi.c. =
∫
|v(r)|≤cs(r)

4πρ(r)r2dr , (1.11)

where cs ≡ cs(r) is the local sound speed, and the integral can be evaluated analyti-
cally5. The value of Mi.c. at core bounce is almost independent of the stellar progenitor
[33, 34].

• Outer Core: in supersonic collapse, because at lower density the sound speed cs de-
creases, so no information about the inner core can reach into the outer core.

The collapse goes on until the central density is so high (ρc ∼ 1014 g cm−3) that the repul-
sive core of the nuclear force becomes relevant. This repulsive contribution causes a sudden
stiffening of the EOS, and triggers the so-called core bounce, which is conventionally de-
fined by an arbitrary threshold on the specific entropy at the edge of the inner core: s = 3 (in
units of the Boltzmann constant kb). The physical picture of the core bounce is the follow-
ing. The inner core overshoots the equilibrium density of the stiffened EOS, stops collapsing
and reverses its radial velocity. This launches a shock wave at the edge of the inner core. It
is thought that this shock wave (at least in some cases) disrupts the star, producing a SN,
but the explosion mechanism is still unknown. In fact, as the shock wave propagates in the
outer core, it loses energy by heating and photodisintegrating the infalling material. More-
over, neutrino losses from behind the shock diminish its energy. The energy loss through
these mechanisms leads to a stalled shock in all numerical simulations available to date, e.g.
[3, 4, 13, 35, 36]. Therefore, some uncertain “shock revival mechanism” must act to revive
the shock and allow it to unbind the stellar envelope and produce a SN explosion [14].

1.2.5 The Supernova Zoo

As described in §1.2.4, the presumable final fate of a massive star is a core-collapse SN. The
observational classification of a core-collapse SN depends on the spectrum and light curve
it produces (e.g. [37] and references therein). The connection between the stellar progenitor
and the resulting SN (if there is a successful explosion) is a topic of active research (e.g. [19,
30, 36]). For the sake of completeness, I report here the schematic classifications of all SN
types, including also those that do not involve core-collapse, see Fig. 1.6.

It is worth underlining that the SN classification is to a great extent historic and does not
always match the physics of the progenitor star and of the explosion. The first distinction
between SN-types is based on the presence of hydrogen lines in the spectrum: the SNe
showing no hydrogen are classified as type I SNe, while those with hydrogen are classified
as type II SNe.

5The dominant pressure term at high density (ρc & few× 109 [g cm−3]) is due to relativistic degenerated
electrons, so we can take a polytropic EOS P ∝ ρ4/3 to evaluate cs.
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Figure 1.6: Schematic representation of the SN taxonomy, based on spectral features and
light curve shape. This figure is inspired by Fig. 2 in [37]. The dot-dashed line indicates the
possible connection between SN events detected in late stages and classified as type Ib/Ic
and SNe of type IIb.

Type I SNe are further subdivided based on the presence of other elemental lines. Those
showing silicon lines are type Ia SNe, and the proposed progenitor is not a massive star, but
instead a white dwarf (WD) that experiences a thermonuclear explosion triggered by merger
or mass accretion. In this scenario, the explosion happens only when a certain threshold
condition (the mass becomes greater than the Chandrasekhar mass) is met, explaining the
homogeneity in the luminosity decay and spectral features of the objects in this class (how-
ever, see [37] and references therein for further discussion). Type I SNe without silicon lines
are further divided into those showing helium lines (type Ib), and those without helium
lines (type Ic). These type Ib/Ic are thought to be the outcome of the collapse of a massive
star that has lost all or most of its envelope.

The subdivision of type II SNe is instead based on the shape of the emission lines: the
presence of narrow emission lines classifies the SN event as a type IIn (where “n” stands for
narrow). These are usually very bright SNe, and the theorized progenitor is a massive star
producing a core-collapse explosion shock wave running into a dense circumstellar material
(CSM). If the spectrum does not show narrow lines, then the sub-classification is based on
the light curves, in particular the behavior of the luminosity decay. If the magnitude decays
linearly in time (i.e. exponential decay of the luminosity), then the SN is classified as a type
IIL. Instead, if there is a phase of constant luminosity (i.e. a “plateau”), the SN is classified
as a type IIP. Finally, if the spectrum shows hydrogen lines only in the very early stages and
then they disappear, the SN is classified as a type IIb (because of the analogy with a type
Ib/Ic SN).
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Except type Ia SN, all other types are thought to be the outcome of a core collapse event
(e.g. [37] and references therein). The differences among core-collapse SNe are strongly
correlated with the structure and (outer) composition of the progenitor, and the presence
of a dense CSM. Mass loss has an important role in shaping both the CSM and the outer
portion of the SN-progenitor structures and compositions, see §1.4. The main motivation of
this work is to understand how mass loss changes the stellar structure, and in perspective,
how this can influence the SN outcome.

1.3 Current Challenges in the Numerical Simulation of Massive
Stars

From the point of view of numerical simulations, massive stars are especially difficult. In
fact, on top of the problems common to the evolution of any star (e.g. uncertainties in the
physics of mixing, limitations due to the assumptions of spherical symmetry), [38], massive
stars pose also severe numerical challenges because they experience dynamically unstable
phases during their evolution, and because of complexity and very short timescale of the
very last evolutionary stages (namely, neon, oxygen and silicon burning). In the following
sections, I summarize the most severe problems that can be encountered in the simulation
of massive stars.

1.3.1 Nearly Super-Eddington Radiation Dominated Convective Envelopes

Stars with MZAMS & 20M� develop extended convective envelopes during their evolution,
which are radiation dominated,

β
def
=

Pgas

Ptot
. 0.5⇔ Pgas . Prad , (1.12)

where Ptot
def
= Pgas + Prad is the total pressure, given by the sum of the gas pressure Pgas

and the radiation pressure Prad. The exact moment when radiation pressure starts to dom-
inate in the stellar envelope depends on the initial mass of the star: for MZAMS ∼ 20M�
this happens during the RSG phase, but stars of higher initial mass (e.g. MZAMS & 70M�)
can have radiation-pressure dominated envelopes starting at ZAMS and may develop the
instability discussed below early in their evolution [39].

Moreover, the luminosity in the envelope can approach (and exceed) the local “modified”
Eddington luminosity6, say

L(r) & LEdd , (1.13)

where

LEdd ≡ LEdd(r)
def
=

4πGM(r)c
κ(r)

. (1.14)

This can happen, for example, if the local value of the opacity κ(r) increases, lowering the
local modified Eddington luminosity. This is common in regions where log10(T/[K]) ∼ 5.3

6The LEdd defined in Eq. 1.14 is “modified” since it depends on the local opacity κ(r). The Eddington lumi-
nosity is usually defined using the Thomson scattering opacity κe, which is a lower limit on the total opacity,
since line processes are resonant. Therefore, when defined using κe, the Eddington luminosity provides a global
upper-limit to the luminosity a star can have while maintaining hydrostatic equilibrium.
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or log10(T/[K]) ∼ 6.2, where the recombination of iron causes a local increase of κ (the
so-called “iron opacity bump”), see Fig. 1.7.
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Figure 1.7: Iron opacity bump for different values of metallicity. The data are from the OPAL
tables, for hydrogen abundance X = 0.7. T6 is the temperature in units of 106 K, and ρ the
density. This figure is inspired by Fig. 38 of [39].

When both the conditions of Eq. 1.12 and Eq. 1.13 are fulfilled, the envelope becomes
numerically and dynamically unstable (a least in one-dimensional – 1D – numerical simula-
tions) [39]. In fact, combining the equation for hydrostatic equilibrium,

dPtot

dr
= −GM(r)ρ(r)

r2 , (1.15)

with the equation for the radiative pressure gradient,

dPrad

dr
= −κρ

c
Lrad

4πr2 , (1.16)

where Lrad is the radiative luminosity, it is easily seen (using also the definition of the Ed-
dington luminosity, Eq. 1.14) that

dPtot

dPrad
=

LEdd

Lrad
. (1.17)

Thus, using Pgas = Ptot − Prad,

dPgas

dr
=

dPrad

dr

[
LEdd

Lrad
− 1
]

, (1.18)

from which it is clear that, when Lrad → LEdd, a gas pressure inversion occurs [39, 40].
However, in non-degenerate environments, the total luminosity is the sum of the radiative
plus the convective luminosity L ≡ Ltot = Lrad + Lconv, therefore Ltot ≥ LEdd does not imply
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Lrad > LEdd. A condition for a gas density inversion can be derived writing the EOS in the
form Pgas ≡ Pgas(ρ, Prad). Therefore the density gradient can be written as:

dρ

dr
=

dPgas
dr −

∂Pgas
∂Prad

dPrad
dr

∂Pgas
∂ρ

=
dPrad

dr
∂Pgas

∂ρ

[
LEdd

Lrad
− 1− ∂Pg

∂Prad

]
, (1.19)

where I used Eq. 1.18 in the last step. Therefore, the sign of dρ/dr is determined by the term
in square brackets in Eq. 1.19 and it is positive (gas density inversion) when

Lrad ≥ Linv
def
= LEdd

[
1 +

∂Pgas

∂Prad

]−1

, (1.20)

see [39, 40]. Note that Linv < LEdd. Since T decreases outwards, if ρ is constant or even
increases, there must be a strong superadiabaticity7, therefore, the region is necessarily con-
vective. Convection must set in before the condition of Eq. 1.20 is reached, and, if it is
efficient, it carries a large fraction of the energy flux, preventing Lrad → LEdd [40]. However,
if convection is inefficient density and pressure inversion occurs, see Fig. 1.8.
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Figure 1.8: From top to bottom: density, gas pressure, total pressure (P ≡ Ptot) and specific
entropy profiles in the outer envelope of a MZAMS = 70M� MESA (§2.1) model at the first
crossing of the Hertzprung gap (i.e. Teff = 5000 K). The gas pressure and density inversion
is clearly visible in the two top panels, small red dots indicate convective regions with no
inversion, large red dots with black borders indicate a predicted density inversion but no
gas pressure inversion, yellow dots indicate gas pressure and density inversion. This figure
is Fig. 40 of [39].

7The superadiabaticity is defined as the difference between the local temperature gradient d log(T)/d log(P)
and the adiabatic temperature gradient ∂ log(T)/∂ log(P)|s. A strong superadiabaticity means the local temper-
ature gradient is steeper than the adiabatic gradient.
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The situation described by Eq. 1.18 (with Lrad → LEdd), Eq. 1.20 and Fig. 1.8 is unstable
both numerically and physically. From the numerical point of view, 1D hydrostatic stellar
evolution codes will try to take very small timesteps to try to follow what is more likely a
dynamical phase of evolution. From the physical point of view, this situation is clearly dy-
namically unstable because of the density inversion, but the physical mechanism possibly
preventing its onset, or the nature of the instability that may develop are not yet under-
stood. It is possible that a multidimensional treatment of convection could prevent such an
instability: if the convective flux is not limited to

Fconv . ρc3
s , (1.21)

as it is in the one-dimensional paradigm of Mixing Length Theory for subsonic convection
(e.g. [23] and references therein), it may be able to prevent the formation of super-Eddington
layers in the star by supporting a larger flux than in 1D simulations8. Another possibility
is that a mechanism other than convection carries the energy away. For example, “photon
bubbles” have been proposed in the literature [41, 42] as a way to bypass the Eddington
limit. Photon bubbles could create preferential pathways for the photons [41, 42] and pro-
vide the missing flux. The mechanism of photon bubbles is thought in analogy with what
happens when a fluid is forced through a bed of solid particles. The fluid can (under suffi-
cient pressure and with the appropriate fluid-to-bed-particles density ratio) push the solid
particles, force itself in between and create bubbles in the solid bed, through which it is eas-
ier to flow. In principle, if the radiation pressure is high, photons could do the same (acting
as the fluid), pushing the stellar gas into over-dense and opaque clumps that absorbs pho-
tons (possibly resulting in a radiatively-driven acceleration above the escape velocity, and
therefore mass loss), and creating voids through which (most of the) photons can stream
away almost freely (see [42]). It is also possible that when nearly super-Eddington, radia-
tion dominated envelopes form, they trigger mass loss either in eruptive events or as very
dense (continuum-driven) wind outflows [7, 43].

1.3.2 Silicon Burning

Another challenge for evolutionary codes is the simulation of stages of advanced nuclear
processing, especially silicon burning. This nuclear burning process produces as ashes all
the elements of the so-called “iron group” (see Fig. 1.3), and happens with central tempera-
ture and density of [9, 12]

T ∼ (3− 5)× 109 [K] , ρ ∼ 107 − 1010 [g cm−3] . (1.22)

This stage duration is very short (cf. Tab. 1.1), because the energy yield of silicon burning is
only of order 0.1 MeV nucleon−1 [9]. Therefore the rates of the thermonuclear reactions must
be very high, and the fuel is exhausted rapidly. At this stage, the stellar core is composed
mainly of silicon nuclei, which start photo-disintegrate

γ + (A, Z)→ (A′, Z′) + {p, n, α} . (1.23)

This process produces lighter particles (i.e. protons, neutrons, αs, etc...), which are then cap-
tured by the remaining nuclei to build heavier (and unstable) nuclei of the iron group

{p, n, α}+ {(A, Z), (A′, Z′)} → {Fe group nuclei}+ . . . . (1.24)

8Keeping Lrad = Frad4πr2 lower than the thresholds in Eq. 1.20 and Eq. 1.18.
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Note that the iron group nuclei produced can be photo-disintegrated too,

γ + {Fe group nuclei} → {(A, Z), (A′, Z′)}+ {p, n, α} , (1.25)

and Eq. 1.23 and Eq. 1.25 nearly balance each other. Many (A′, Z′) nuclei produced by
photodisintegration and particle captures are extremely neutron or proton rich, therefore a
large number of weak reaction such as β±−decays and electron captures9 play an important
role. Moreover, these weak reactions are paramount in the determination of the value of
Ye in the core, which enters quadratically into the Chandrasekhar mass, Eq. 1.7. Another
complication arises because of non-nuclear weak reactions, i.e. the important production of
thermal neutrinos that carry away energy and entropy. This neutrino cooling interacts in
a complicate way with convection [8], tailoring the extent of convective shells and thus the
final structure of the inner portion of the star, [19].

Despite the challenges posed by silicon burning, because of its importance in the deter-
mination of the structure and composition of the iron core, it needs to be followed in great
detail in order to produce pre-SN structures as reliable initial conditions for the further evo-
lution in core-collapse SN.

Because of the large number (& 200) of isotopes involved in the processes outlined by
Eq. 1.23–1.25, and because of the extremely high rates of the reactions10, silicon burning
is very difficult from the computational point of view. Often, physical approximations are
required (e.g. Quasi Statistical Equilibrium – QSE – see for example [3, 12]), or the numerical
simulations are stopped at earlier stages, before silicon ignition (e.g. [44, 45]).

1.3.3 Lack of Systematic Studies to Quantify the Many Uncertainties

Because of the problems mentioned in §1.3.1 and §1.3.2, the numerical simulation of a mas-
sive star from ZAMS to the onset of core-collapse is a time-consuming task, even with 1D
codes. This directly translates to a lack of systematic studies that quantify the uncertain-
ties associated with the large number of free or poorly constrained parameters (e.g. mixing
length, some nuclear reaction rates, mass loss algorithm and efficiency, etc...).

Most of the stellar astrophysics community dealing with the evolution of massive stars
seems to trust fiducial sets of parameters adopted. Often, the many parameters necessary
to carry out a simulation are tweaked in order to find an overall agreement with observa-
tions (e.g. the mass loss rate, see [7]). The lack of a quantified systematic error in stellar
simulations significantly complicates the comparison with observed phenomena [7, 38].

Moreover, it is necessary to stress that many physical processes involved in the evolution
of stars are not completely understood (e.g. mass loss, see §1.4) or they are simulated with
simplified parametric algorithms (e.g. Mixing Length Theory for convection). The many free
parameters present in stellar evolutionary codes can, in principle, permit the reproduction of
a large variety of observed phenomena without an accurate reproduction of the underlying
physics.

This calls for studies aiming to quantify the systematic errors associated with the many
assumptions commonly made in numerical simulations of massive stars. The present study
aims to understand and constrain the systematic uncertainty associated with mass loss from

9Positron captures are always negligible for stars with MZAMS ≤ 40M� [9].
10Near equilibrium, nearly balancing forward and backward reactions with extremely high rates create nu-

merical round-off error problems.
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massive stars, by comparing the effects of various mass loss algorithms commonly used in
massive star evolutionary calculations (see §1.4). Moreover, I attempt a numerical experi-
ment to explore the effects of violent and short-lasting mass loss events (regardless of the
mechanism triggering it) on the stellar structure (see §1.4.9 and §2.4).

1.4 Massive Star Mass Loss

Mass loss is one of the most important phenomena in massive star evolution. It is also a
channel by which massive stars affect their environment. For the star, mass loss reduces its
total mass and alters the star’s evolutionary timescales (e.g. [46]), especially the time spent
on the RSG branch of the HR diagram. Moreover, mass loss is necessary to explain the
variety of core-collapse SN event (see §1.2.5 and e.g. [7, 45, 47, 48]).

Despite its centrality, mass loss is not fully understood. It is presently one of principal
sources of uncertainty in massive star evolution [7]. There are three main modes of mass
loss:

• Radiatively driven stellar winds;

• Episodic and/or eruptive mass loss (e.g. wave driven, pulsational instabilities or giant
eruptions from Luminous Blue Variables - LBVs, [6, 7, 49, 50]);

• Roche lobe overflow (RLOF) in binary systems.

Which of these processes determines the total amount of mass shed has been a matter
of intense debate in the literature (see [7]), but it seems well established that for the more
massive stars (e.g., the ones that become LBVs), the bulk of the mass must be lost in violent
and brief events rather than in long-lasting steady winds[7]. Moreover, because of the large
fraction of massive stars in close11 binary systems [20], RLOF must be involved in extracting
mass from these stars. I describe the simplified simulation of a violent and short mass loss
event in §2.4, and the corresponding result in §4.

Since stellar evolution codes are usually one-dimensional and hydrostatic, i.e. they as-
sume spherical symmetry and do not solve time dependent equations of motion for the
matter, it is hard to include mass loss in a physical and self-consistent way. Observed mass
outflows are non-spherical and their asphericity could play a role in the mass loss dynamics.
For these technical reasons, the intrinsically dynamical and fast eruptive, explosive and/or
episodic mass loss is completely neglected in single star evolutionary models12: stellar evo-
lution codes cannot compute the response of the structure to the mass removal if it happens
on a dynamical timescale.

Stellar winds are also dynamical (see §1.4.1), however, they are characterized by a much
smaller mass loss rate (Ṁ ∼ 10−9 − 10−4M� yr−1, largely depending on the evolutionary
stage of the star) than the eruptive and/or RLOF events (Ṁ & 10−4 − 10−1M� yr−1 [7]),
and their duration is of course much longer than that of the episodic events. Moreover, the
characteristic timescale is shorter than the thermal timescale of the star. Thus, it is easier to
average wind mass loss in time: the assumption of steadiness permits including it in stellar
evolutionary codes with a parametric algorithm that provides a value of Ṁ. This, multiplied

11That is, the star interacts with its companion before the end of the globally hydrostatic evolution.
12Some authors, e.g. [46], include it by artificially enhancing the mass loss rate in order to reproduce the total

amount of mass expected to be shed by the star in episodic events.
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by the timestep, gives the total amount of mass to be removed from the (outer) envelope at
each time integration step. The amount of mass to be removed is determined at the point
where the gas reaches the speed of sound (see below), therefore, regardless of the dynamics
happening in the outermost layers, mass can be removed from the outer portion of the star.
Note that the entire stellar structure re-adjusts to mass loss at each time step, because of the
changes in the boundary conditions.

Underlying the available parametric algorithms there is also the assumption of spheri-
cal symmetry, which necessarily breaks when rotation and/or magnetic fields are required
(although some codes include also parametric enhancements of mass loss because of the
centrifugal force lowering the effective gravity geff, see [39]).

Note that even stellar evolution codes including the time-dependent hydrodynamical
equations need parametric algorithms for the winds, since they do not compute the radia-
tive acceleration, (see below), and neglect the episodic mass loss. This is partly because
the physical mechanism triggering these events is yet unknown, and partly because stellar
evolution codes use large timesteps that cannot properly resolve short eruptions.

Note also that none of the algorithms available to date self-consistently compute the ve-
locity structure v(r) in the wind, the radiative acceleration and the mass loss rate. These
quantities are inter-dependent (see below), and v(r), together with the ionic populations,
enters into the observational diagnostics of the mass loss rate. The self-consistent computa-
tion of the wind velocity structure, the radiative acceleration and the mass loss rate is a very
challenging task because of the high non-linearity of the problem.

1.4.1 Outline of the Theory of Stellar Winds

Because an algorithm that gives a time averaged Ṁ over a given numerical timestep is
needed, the community has focused on steady line-driven stellar winds [7]. In line-driven
winds, momentum is resonantly transferred from photons to the gas via absorption and
line scattering (i.e. bound-bound transitions). The basic idea is that each incoming photon
has a well defined direction and excites an atom or ion which then de-excites via isotropic
emission. This results in the transfer of momentum,

∆p =
h
c
(νi cos(θi)− ν f cos(θ f )) , (1.26)

in the radial direction to the atom/ion, where the subscript i indicates the quantities of
the incoming photon and the subscript f those of the outgoing photon produced by the
de-excitation [49]. When integrating over all directions, the effects of all the de-excitation
photons average out, and the net result is a radially directed acceleration. This is possible
because the radiation field is not isotropic in stellar atmospheres13 (otherwise the effects of
the incoming photons would also average to zero). Atoms with a large number of lines, i.e.
metals, are paramount for the momentum transfer, since they provide high opacities κ de-
spite their low abundance. This is why line-driven winds should be metallicity dependent.
The collisional (Coulomb) coupling [49] redistributes the momentum that metals acquire
from photons among all the species. This requires a density high enough to yield a colli-
sional rate higher than the absorption rate.

Note also that in this picture the wind is expected to be inhomogeneous [7, 49]. In fact,
the acceleration of a gas parcel at radial distance r from the center of the star, caused by a

13The anisotropy of the radiation field can be considered as the definition of “stellar atmosphere”.
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single line-absorption, is the amount of momentum lost by the radiation field per unit time
[51, Ch. 8],

gline
rad,ν =

(
Lν

4πr2

)(
κρ

τν

) (
1− e−τν

) 1
cρ

, (1.27)

where the first term in brackets is the monochromatic flux from the star (approximated as
a point-like source), the second term corresponds in the Sobolev approximation (see below)
to

κνρ

τν
=

ν

c
dv
dr

, (1.28)

where τν is the (specific) optical depth at frequency ν (see definition below, Eq. 1.31). Eq. 1.28
defines the width of the absorption band. The third term in brackets of Eq. 1.27 is the proba-
bility for a photon to reach the point r in the wind without being absorbed in the innermost
region. Thus, the product of the three terms in brackets on the right-hand side of Eq. 1.27
is the energy absorbed per unit time and per unit volume by the gas at distance r from the
center of the star. Dividing it by c, it becomes the momentum per unit time and per unit vol-
ume, and dividing again by ρ, it becomes the acceleration per unit volume due to the line
absorption. The only subtle point here is the approximation needed to write down Eq. 1.28,
i.e. the so-called Sobolev approximation. This corresponds to the assumption of a Dirac δ
profile for the intrinsic profile of the absorbing line, (or, in other words, it corresponds to
neglecting the intrinsic width of the line with respect to the Doppler shifts, see below)

φ(ν− ν0) = δ(ν− ν0) , (1.29)

so that the radiative acceleration depends only on the incoming flux and local quantities at
the point where it is absorbed. This assumption is reasonable whenever all quantities can
be considered constant over the so-called Sobolev length,

Ls
def
=

vth
dv
dr

, (1.30)

where the thermal velocity vth enters because thermal line-broadening causes departures
from the δ-function profile since the lines are Doppler shifted in random directions be-
cause of the thermal agitation of the atoms, and the velocity gradient appears because of
the Doppler shift (see below). In order to derive Eq. 1.28, consider the (specific) optical
depth definition [51, Ch. 8]

τν(r)
def
=
∫ ∞

r
κν′ρ(r′)dr′ ≡ πe2

mec
fl

∫ ∞

r
nl(r′)

(
1− nu(r′)

nl(r′)
gu

gl

)
φ(ν′ − ν0)dr′ , (1.31)

where the specific absorption coefficient κν is expressed using the oscillator strength fl , the
population of the upper (lower) level of the considered transition nu(l), and its degeneracy
gu(l), and ν′ ≡ ν′(r′) is the frequency ν as seen from the point r′. Using Eq. 1.29 and the
Doppler shift relation,

ν′ − ν0 = ν

(
1− v(r′)

c

)
− ν0 , (1.32)

where ν is the frequency emitted at the photosphere, ν0 is the central frequency of the line
and v is the velocity in the radial direction, we can carry out the integration in Eq. 1.31 and
get the so-called Sobolev optical depth

τν = κνρ

(
dv
dr

)−1 ∣∣∣∣
r

c
ν

, (1.33)
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where the velocity gradient appears when integrating the Dirac δ with the right hand side
of Eq. 1.32 as the argument. Eq. 1.33 is equivalent to Eq. 1.28. Note that the Doppler shift is
paramount to obtain Eq. 1.33, and, more in general, for the line driven radiation acceleration.
First of all, it allows to photons that do not interact with the inner layer of the atmosphere,
to give a contribution in the outer portion of it. Secondly, it allows for the de-saturation of
spectral line. And finally, when the atomic/ionic species approach the terminal velocity of
the wind, the Doppler effect shifts the spectral lines out of the frequency range in which the
driving is most effective.

By the substitution of Eq. 1.28 into Eq. 1.27 it is easily seen that the single line-absorption
radiative acceleration is proportional to the velocity gradient,

gline
rad,ν =

(
Lν

4πr2c2ρ

)
ν
(
1− e−τν

) dv
dr
⇒ gline

rad,ν ∝
dv
dr

, (1.34)

therefore, line driven acceleration tends to separate the gas into “clumps”, because the
acceleration of a parcel increases the velocity gradient dv/dr, causing an increase of the
acceleration of the parcel itself. This mechanism creates a differential acceleration among
initially adjacent gas parcels and can produce shocks and therefore inhomogeneities in the
wind. It has been proposed as a cause of the observed over-dense regions in stellar winds14

(the so-called “clumps”, see [7, 49] and references therein for a review of the observational
signature of the presence of overdense clumps).

Note that Eq. 1.34 is valid for a differential band-width around the central frequency
ν. Stellar evolution codes do not compute the spectra of the simulated stars, therefore the
dependence of the radiative acceleration (integrated over all frequencies) on the outgoing
radiation is parametrized in terms of the total photon flux, expressed as a function of the
effective temperature Teff and/or the bolometric luminosity L.

Most mass loss algorithms currently available are not derived from first principles, but
are rather semi-empirical formulae based on observations. Therefore many do not include
an explicit metallicity dependence, or just assume a smooth scaling with Z 15,

Ṁ ∝
(

Z
Z�

)x

, (1.35)

with x ∼ 0.5 [14, 25], which arises from the combination of the metallicity dependence of the
number of photon interactions driving the wind, and the metallicity dependence of the wind
terminal velocity (see also §1.4.5). Note that deviations from Eq. 1.35 are expected at very
high Z (once the metal lines driving the wind saturate, i.e. absorb all the relevant photons,
there cannot be further acceleration) and at very low Z (because of the lack of metals and
thus lines) [25]. Deviations can occur also whenever the chemical composition does not scale
with the solar metallicity (i.e. when there are differential variations among the abundances
of different elements). This could happen in stars born in an environment very different
from the pre-solar nebula, or whenever mixing processes (e.g. rotational mixing [52, 53]) lift
large amounts of metals to the stellar surface.

Winds are theoretically expected, and also observed, to be variable both in space (e.g.
because of rotation or clumpiness) and time [49], but all the available algorithms assume

14Note, however, that this may not be the only mechanism driving the formation of clumps, and other un-
known physical processes may also result in inhomogeneities in the wind structure.

15However, few exceptions exists, such as [25], §1.4.5.
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steady state and homogeneity [7]. On the one hand, this is the reason why they are used in
stellar evolution codes, but on the other hand this introduces poorly controllable systematic
errors 16. In fact, recent work (e.g. [7, 49]) suggests that the current predictions for mass loss
rates are overestimated by a factor between 2 to 10, and suggests 3 as the most realistic over-
estimation factor [7]. This over-estimation can arise whenever the mass loss rate is inferred
from the continuity equation,

Ṁ = 4πr2ρv(r) , (1.36)

assuming that ρ ≡ ρ(r) is constant in each spherical shell of given r. Instead, theoreti-
cal and observational evidences of small-scale inhomogeneities (at constant r) are available
(e.g. [7, 49] and references therein). Many observed spectral features are dominated by
the over-dense “clumps” of matter. Therefore, the density inferred from observation is the
density of the “clumps”, which is higher than the mean density of the wind, and if this “ob-
served” density is used in Eq. 1.36, the resulting mass loss rate obtained is higher than it
should be. Note, however, that if the radiative acceleration of clumps is extremely efficient,
inhomogeneities could also, in principle, increase the mass loss rate. To quantify how much
the mass loss rates are over-estimated, it is standard practice to define a “clumping factor”
[7, 49],

fcl
def
=
〈ρ2〉
〈ρ〉2 , (1.37)

where 〈〉 indicates the average over the wind structure. The numerator can be inferred
from observational diagnostics which depend on ρ2, i.e. recombination emission such as Hα,
radio or infrared excess. The denominator instead can be inferred from diagnostics which
are linearly proportional to ρ, such as resonant P Cygni line profiles. See §1.4.2 for a short
review of the observational methods, or [51, Ch. 2] and [49] and references therein. If fcl
is known, then the efficiency of the wind rates inferred from the first kind of observational
diagnostics can be reduced by a factor η =

√
fcl , [7].

Figure 1.9 illustrates the mass loss history of a 15M� solar metallicity MESA (see §2.1)
model, as an example of the current results from numerical simulations. The wind algorithm
used is a combination of the Vink et al. (§1.4.5), de Jager et al. (§1.4.2) and Nugis & Lamers
(§1.4.7) algorithms 17. In the stellar model shown in Fig. 1.9, the mass loss rate has been
reduced by a factor η = 0.33, to account for wind clumpiness. Note, however, that this
picture may still be far from the mass loss history of real stars.

As Fig. 1.9 illustrates, a typical massive star will lose only a small fraction of its mass
during the main sequence, the mass lost until core H depletion for a MZAMS = 15M� is
. 0.2M�, even if the main sequence is the longest phase of a star’s lifetime. The wind
becomes stronger during the supergiant phase, when the stellar radius increases dramati-
cally, the atmosphere cools down and dust grains may form through nucleation. During this
evolutionary phase, the wind could be dust-driven instead of line-driven, i.e. the radiation
field may transfer momentum primarily to dust grains instead of metal atoms/ions (see also
§1.4.4). Collisional coupling between dust and the surrounding gas redistributes momen-
tum and drives mass loss, as in the line-driven case. The qualitative behavior of the M(t)
function is similar for all massive stars. However, for higher initial masses, the luminosity
will be higher, the radius larger and the surface cooler, so the wind mass loss rate will be

16Note that the semi-empirical nature of these algorithms is largely responsible for this. In fact, also the
empirical determination of the mass loss rate of observed stars is largely uncertain, see below, and, e.g., [7].

17The last algorithm is for to Wolf-Rayet (WR, see §2.2.2 for the definition) stars and is not used for the 15M�
star shown in Fig. 1.9.
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Figure 1.9: Mass as a function of time for a MZAMS = 15M�, Z� star, computed with MESA
(§2.1, release version 6794) using the wind mass loss algorithm “Dutch” (see legend and text)
with an efficiency η = 0.33. The model is evolved from the zero age main sequence (ZAMS)
to the onset of core-collapse. The red circle indicates the TAMS, i.e. central H depletion
(Xc < 0.01), and the red triangle indicates the end of core He burning , i.e. Yc < 0.01.

much higher. Thus, more massive stars lose a larger fraction of their mass during their glob-
ally hydrostatic evolution, possibly reaching the onset of collapse with a lower total mass.
Note that in Fig. 1.9 only wind mass loss is considered (and even with reduced efficiency).

1.4.2 de Jager et al.

The de Jager wind scheme [54] is an empirical relationship of the form Ṁ ≡ Ṁ(Teff, L). This
choice of variables has the advantage of using only observable quantities, making it easy to
track the mass loss rate while the star climbs on the HR diagram. The drawback is that this
approach does not incorporate direct information about the physical mechanism driving the
wind.

Note that Teff does not have a direct physical meaning. It is defined by the black body
relation,

L = 4πR2σT4
eff , (1.38)

where σ is the Stefan-Boltzmann constant. Therefore, for any L, higher Teff corresponds to
smaller radii and higher surface gravity: the mass loss rate is expected to be lower at higher
Teff, which may not seem intuitive at first sight.

To obtain a reliable mass loss algorithm, de Jager et al. [54] proceed as follows. They
collect from the literature the observed mass loss rates of 271 stars, nearly all of population I
and spectral types from O to M. These mass loss rates are determined using several different
methods based on the analysis of different portions of the stellar spectrum. For the sake of
completeness, I include here a brief description of these methods (the interested reader is
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referred to [51, Ch. 2] and [49, 55] for more details).

Figure 1.10: Schematic representation of the formation of a P Cygni profile in a stellar wind.
The dark region is moving toward the observer, causing the bulk of the blue-shifted absorp-
tion, as the dashed arrows indicate. The gas moving in all other directions contributes to the
red-shifted emission. The gray region is occulted by the mass-losing star, and thus the gas
in that region is not accessible to observations. This figure is Fig. 10.4 of [56].

• Ultraviolet (UV) spectra, mainly focusing on UV resonance line profiles - the so-
called P Cygni profiles18. These profiles (see Fig. 1.10) are characterized by a red-
shifted emission component and a blue-shifted absorption component. The red-shifted
component is caused by emission from outflowing gas moving away from the ob-
server [51, Ch. 8], while the blue shifted component is caused by the absorption in
the gas moving toward the observer along the line of sight. Scattering of photons into
the line of sight from matter moving in other directions contributes to broaden both
components, adding contributions from the gas not moving along the line of sight. To
deduce the mass loss rate one needs to fit the observed profiles varying the spatial
distribution of scatterers ni(r) in the wind, which in turn can be translated in a density
distribution ρ(r). Then Ṁ can be evaluated using the continuity equation, Eq. 1.36,
and an assumption, or an independent measurement of v. The disadvantage of this
method is that it requires assuming the chemical composition and degree of ionization
throughout the wind. But it has the advantage of being only weakly influenced by
the wind clumpiness (compared to other methods that depend on higher powers of

18P Cygni profiles do not need to be in the UV range. However, the most relevant P Cygni profiles for the
mass loss determinations are in the UV spectra of stars.
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the density) since the physical process for line formation is scattering19, for which the
line strength is only linear in the density ρ [7, 55]. Thus, the fit of P Cygni profile lines
provides a good estimate of the mass loss rate even if the wind is clumpy;

• Spectral lines in the optical and near UV, such as Hα. These are mostly emission lines
due to recombination processes [51, Ch. 2], therefore their emissivity is proportional
to ρ2 and they are strongly affected by clumpiness. Since the recombination rate is
also a function of the temperature, the emissivity is jν = ρ2 f (T), with f some known
function of the temperature. Usually, the wind is optically thin to photons emitted via
recombination because of the Doppler shift: the outermost matter is faster and will
not absorb the photons produced in the inner regions. In the optically thin limit, if
the distance to the star is known, the mass loss rate can be inferred from the total line
luminosity Ll , i.e. the energy emitted by the star per unit time in that line.

Ll =
∫ ∞

R
jν4πr2W(r)dr =

∫ ∞

R
ρ2 f (T)4πr2W(r)dr =

Ṁ2

4π

∫ ∞

R
f (T)

W(r)
r2v2(r)

dr , (1.39)

where W(r) is the so-called dilution factor that is used to exclude the photons emitted
toward the star (which cannot reach the observer), and in the last step I use Eq. 1.36.
The drawback of this method is that it requires detailed knowledge of the velocity
structure v(r) and the distance of the star. Analytic approximations exist for v(r) (see
Eq. 1.58). Moreover, because of the ρ2 dependence, the mass loss rate inferred with this
method is biased toward higher values for clumpy winds (if the data are interpreted
assuming homogeneity);

• Broadband photometric data in the infrared (IR) and radio continuum. The pres-
ence of an ionized wind surrounding the star causes an excess in the IR and Radio
continuum (see below), because of bremsstrahlung (free-free) emission in the wind
[51, Ch. 8]. Thus, this excess is proportional to the density squared and if the velocity
and temperature structures of the wind are known, the mass loss can be inferred from
the continuity equation, Eq. 1.36. To use this method at radio wavelength, it is neces-
sary to exclude stars whose emission is dominated by synchrotron radiation. Again,
the ρ2 dependence introduces the risk of over-estimating Ṁ for clumpy winds if the
assumption of homogeneity is used;

• IR spectrum of molecules containing C, especially CO [51, Ch. 8]. This method is
used to determine the mass loss rate of cool stars with very extended winds. The CO
molecule is so stable that it forms very deep in the wind (i.e. very close to the photo-
sphere), and it is found everywhere in the wind. Therefore CO is a good tracer of the
wind density, from which Ṁ can be inferred using Eq. 1.36. The interesting molecular
transitions are between levels of the vibrational band (excited by IR photons) or rota-
tional band (excited by collisions with H2 molecules) [51, Ch. 8]. Note that collisions
will push the level populations toward thermal equilibrium, while photon excitations
will cause a departure from it (and in the extreme photon dominated case this will
lead to masers, see below). To illustrate the mass loss determination using molecular
lines, we can consider a rotational transition from Ju → Jl , where the subscripts stand
for “upper” and “lower” respectively. The population of the lower level nl is propor-
tional to ρ and can be determined using the formalism of partition functions, while the

19Note however that the ionization fraction varies as ρ2.
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population of the upper level can be expressed using a Boltzmann-like relation,

nu =
gu

gl
nle−∆E/kbT∗ , (1.40)

where gu (gl) is the degeneracy of the upper (lower) level, ∆E = Eu− El is their energy
separation, and T∗ is an effective (non-physical) temperature, which will correspond
to the gas temperature only if photon excitation can be neglected, and which can even

Figure 1.11: Examples of maser line profiles from VY Canis Majoris. The x axis is the “local
standard of rest” (LSR) velocity. In the last panel, the dashed line indicates the thermal
profile of SiO emission, whose centroid is probably the stellar velocity, and a weak maser
feature appears near ∼ 18 km s−1. This figure is Fig. 7 of [57].
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become negative if a population inversion occurs. The emissivity of the line is jν =
nu Aulhν, where Aul is the Einstein coefficient for spontaneous emission, and the line
luminosity is related to jν (see Eq. 1.39), so, if T∗ and v(r) are known from independent
measures, it is possible to determine ρ and thus Ṁ from Ll . This works only if CO is
optically thin, i.e. photons from these transition can reach the observer;
• Maser lines. This method provides Ṁ only for low density winds, otherwise collisions

will prevent the population inversion which causes the maser. To have a maser line
in a spectrum, a population inversion is needed, so that the non-local thermal equilib-
rium (non-LTE) correction factor for the absorption coefficient χ = [1− nugl/nl gu] (cf.
Eq. 1.40) becomes negative. This is usually caused by a “pump”, provided in stellar
atmospheres by photons Doppler-shifted to the right frequency. Therefore the maser
lines will have a double-peaked profile (Fig. 1.11), one peak corresponding to −vD
(wind moving toward the observer) and the other to +vD (wind moving away from
the observer), where vD is the velocity needed to get the maximum pump efficiency.
This means that the velocity of the wind can be inferred from the separation between
the two peaks [51, Ch. 2]. Then, the density can be inferred from the amplification
factor eτν , and therefore the mass loss rate can be calculated via Eq. 1.36.

Note that these are not the only methods available to measure the mass loss rate [51,
Ch. 2]. de Jager et al. determine the accuracy of each mass loss estimate by comparing the
results of different methods for the same star20. For each star having the mass loss rate
determined with at least 3 different methods, de Jager et al. derive a mean value of the
logarithm of the mass loss rate (〈log10(−Ṁ)〉). Together with 〈log10(−Ṁ)〉, they also derive
the deviation ∆ = log10(Ṁ) − 〈log10(−Ṁ)〉 of each determination from the mean value.
The authors then derive the one sigma value of the distribution of ∆, σdet ' 0.37 , and use
it as the “average intrinsic error per determination”. They assign a weight to each mass
loss determination based on the number of methods used to find it. Then, they determine
the bolometric luminosity and effective temperature for each star, using both a weighted
average between the observed value(s) and the theoretical relationship of spectral type and
luminosity class as functions of Teff and L.

de Jager et al. obtain the functional dependence Ṁ ≡ Ṁ(Teff, L) by writing log10(−Ṁ) as

a sum of Chebychev polynomials of the first kind Tn(x) def
= cos(n arcos(x)):

log10(−Ṁ) =
N

∑
n=0

i=n

∑
i=0

j=n−i

aijTi(log10(Teff)) · Tj(log10(L)) , (1.41)

where the coefficients aij are found by fitting the available data with this formula.
What is commonly used in stellar evolution codes is the first order approximation of

Eq. 1.41,
log10(−Ṁ) = 1.769 log10(L/L�)− 1.676 log10(Teff/[K])− 8.158 . (1.42)

The algorithm of Eq. 1.42 is presented by de Jager et al. as a valid formula for the “av-
eraged statistical behavior” of stellar winds across the entire HR diagram within an error
comparable to algorithms valid only for smaller portions of the diagram. This interpreta-
tion of their result is natural, since the mass loss rate is determined as an average over a
large set of stars and not from the observation of a single object. The standard deviation of

20It was not their goal to determine which observational method is more reliable.
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the log10(Ṁ) predicted by Eq. 1.42 is σ ' 0.45− 0.50, slightly larger than σdet. This indicates
that, even if Teff and L are the most important quantities to characterize the mass loss rate,
also other quantities should play a minor role. It is important to note that WR and Be stars
where intentionally left out of the data set used to determine Eq. 1.42.

1.4.3 Nieuwenhuijzen et al.

The algorithm described in Nieuwenhuijzen et al. [58] is a refinement Eq. 1.42. It is derived
from the same data set, and includes the dependence of the mass loss rate on the total mass.
It also translates the temperature dependence into a radius dependence. The inclusion of
the total mass in the quantities determining the mass loss rate allows the authors to find a
smaller standard deviation of their predicted log10(−Ṁ), matching the value for the distri-
bution of the observed mass loss rates.

However, since the mass is not a directly observable quantity for single stars, the mass
determination is based on numerical simulations of stars. The theoretical models used are
from Maeder & Meynet [59, 60]. An important caveat must be mentioned: the fact that dif-
ferent stellar evolution codes consider a large variety of physical processes (e.g. for mixing
and mass loss), or just use different implementations of the same physical processes, causes a
spread in the stellar masses found at the same point of each model evolution. Therefore, the
Nieuwenhuijzen et al. mass loss algorithm depends on the validity of the set of models used.
This drawback applies to all mass loss algorithms involving a functional dependence of the
form Ṁ ≡ Ṁ(M) derived from stellar evolution models. However, the mass dependence
of the mass loss rate found by Nieuwenhuijzen et al. is rather weak (see Eq. 1.45). Some au-
thors (e.g. [61]) suggest avoiding the model dependence issue by substituing the total mass
M with a fixed value, and find that this does not significantly change their results.

Stars with different masses pass through the same point on the HR diagram at different
stages of their evolution. Nieuwenhuijzen et al. [58] use this to build an “average expected
mass” M of a star at a given (Teff, L) point. This value is derived as follows. The authors
define a dwell time representing the time for a star to travel over a unit length track on the
HR diagram, i.e. ,

t(d) def
=

∆t√
[∆ log10(Teff/[K])]2 + [∆ log10(L/L�)]2

, (1.43)

where ∆t is the time spent to travel over the (∆ log10(Teff/[K]), ∆ log10(L/L�)) distance.
For every point on the HR diagram, there are leftward or rightward subtracks of the

stellar evolutionary tracks crossing it. Let t(d)n be the dwell time for the n-th subtrack. The
average expected mass M is obtained as:

M =
∑N

n=1 Ψ(Mn)
dMn

d log10(L) t(d)n Mn

∑N
n=1 Ψ(Mn)

dMn
d log10(L) t(d)n

, (1.44)

where Ψ is the initial mass function for stars on the subtrack considered, N is the total
number of crossing, and dMn/d log10(L) is the density of tracks over a unit log10(L) interval.

The authors perform a fit of the data set21 used in [54], adding the value of M from

21Which on purpose does not include WR and Be stars.
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Eq. 1.44 to the set, and find the interpolation formula

log10(−Ṁ) = −14.02+ 1.24 log10(L/L�)+ 0.16 log10(M/M�)+ 0.81 log10(R/R�) . (1.45)

The uncertainties on this mass loss rate is determined as in [54], i.e. using the standard
deviation of their fit. They find σ = 0.36, which is equal to the intrinsic deviation of the
individual mass loss determinations, σdet (see §1.4.2).

1.4.4 van Loon et al.

The mass loss algorithm in van Loon et al. [62] is an empirical formula derived from the
observation of a sample of oxygen-rich asymptotic giant branch (AGB) and red supergiant
(RSG) stars in the Large Magellanic Cloud (LMC). Their analysis is based on a dust-driven
wind model: AGB and RSG stars have very extended, cool and dusty envelopes.

To derive their mass loss formula, the authors first derive the spectroscopic classification
of the stars in their sample. Then, they fit the IR spectrum of the observed stars with the
dust radiative transfer model DUSTY [63] to deduce Teff and L. Their model assumes a very
simple structure of the dust grains (all identical) and dust-to-gas mass ratio obtained by
scaling the value observed in solar metallicity environment to the LMC metallicity. Once
Teff and L are known, they fit their data to obtain the relation

log10(−Ṁ) = −5.65(15) + 1.05(14) log10(L/104L�)− 6.3(1.2) log10(Teff/3500 K) . (1.46)

In Eq. 1.46 the numbers in parenthesis indicate the estimate of the error on the last digits as
reported in [62].

Although many authors use this algorithm for RSG stars (e.g. [46]), it is semi-empirically
derived from a particular set of data for low metallicity AGB and post-AGB stars, so it may
not be suitable to simulate more massive stars mass loss in the early RSG phase.

1.4.5 Vink et al.

Vink et al. [25, 64] provide a metallicity dependent algorithm from a theoretical model of the
wind. They carry out a Monte Carlo simulation of the photon transport through the stel-
lar atmosphere, allowing for multiple scattering and overlapping of the wings of adjacent
spectral lines. They evaluate the momentum acquired by the gas as the momentum lost by
photons.

The structure of the atmosphere, needed as an input to evaluate the radiative accelera-
tion, is based on a gray LTE approximation (i.e. radiative equilibrium is not strictly fulfilled,
otherwise it would not be an atmospheric model), and non-LTE populations of the levels
of several species (H, He, C, N, O, Si) are computed. Iron group elements are treated in
the so-called “generalized nebular approximation” [65], i.e. assuming that all ionization/re-
combination processes happen from/to the ground state only.

The authors explore the dependence of Ṁ on various stellar parameters (M, the ratio of
the escape velocity vesc to the terminal velocity v∞ of the wind, Z, Teff, L) by computing a
grid of models, evaluating the wind and finding a fitting formula for their synthetic data.

The metallicity dependence of the wind mass loss rate is extracted by running simula-
tions with varying Z in the range between 0.01Z� and 10Z�, [25]. The scaling of Ṁ with Z
is smooth, such as in Eq. 1.35, in the range 1/30 ≤ Z/Z� ≤ 3, with an exponent x ' 0.85. By

28



CHAPTER 1. INTRODUCTION

Figure 1.12: Predicted bistability jump in Ṁ at Teff ∼ 25000 K. The stellar parameters used
are L = 5.0L�, M = 20M�, Z = Z�. This figure is Fig. (3) of [66].

carrying out simulations with different composition of the wind (only iron group elements,
only lighter metals and then a third considering all of them), the authors find two different
kinds of Z dependence of the mass loss rate: the interplay of these gives the smooth scaling.
The first is the dependence of the mass loss rate on Z through the total amount of mass lost
(Ṁ ≡ Ṁ(M, ...) and for each timestep tn we have M(tn) = M(tn−1)− |Ṁ(tn)| · (tn − tn−1),
and the last term is a function of Z). The second is the dependence on Z through the
wind final velocity (Ṁ ≡ Ṁ(v∞, ...) and v∞ ≡ v∞(Z)). The total amount of mass lost,
Mlost = Ṁ(tn) · (tn − tn−1) is determined mainly by the abundance of iron group elements
in the inner (subsonic) portion of the wind, because the great number of spectral lines of
iron group elements causes the lion’s share of line-driven acceleration in the subsonic part
of the wind. The final velocity v∞ depends mainly on the abundances of lighter metals (C,
N, O, etc...) in the outer (supersonic) part of the wind. These are irrelevant in the inner
(supersonic) portion because they have many fewer spectral lines than iron group elements,
but in the Vink et al. simulations they are found to dominante the outer subsonic portion
of the wind [66]. Note that once the wind crosses the sonic point the amount of mass lost
Mlost(tn) is set and only the final velocity is yet to be determined [66].

In the temperature range they explore, bi-stability jumps of Ṁ are expected, see Fig. 1.12.
These bi-stability jumps are regions in the Teff domain where the behavior of Ṁ is reversed,
or in other words, regions where dṀ/dTeff changes sign. For example, if 27500 K . Teff .
50000 K the mass loss rate is lower for lower Teff (i.e. dṀ/dTeff > 0), because the peak of
the spectral distribution shifts to longer wavelengths where there are fewer spectral lines
to drive the wind. The same happens for 12000 K . Teff . 22500 K, while around Teff ∼
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25000 K the opposite behavior is found: Ṁ increases as Teff decreases in this domain (i.e.
dṀ/dTeff < 0). A similar behavior is found also in other temperature ranges.

These jumps happen because of recombination of certain ions when Teff reaches the rele-
vant values. For example, at Teff ∼ 25000 K recombination of Fe3+ to Fe2+ happens, and the
corresponding bi-stability jump is due to the different cross sections for photon interactions
of these different ions. To be more specific, Fe2+ has a higher cross section, therefore it is a
better driver than Fe3+.

The algorithm obtained by the authors gives two different relationships above and below
the bi-stability jump at Teff ∼ 25000 K:

log10(−Ṁ) = −6.697(61) + 2.194(21) log10

(
L

105L�

)
− 1.313(46) log10

(
M

30M�

)
+

−1.226(37) log10

(
v∞

2vesc

)
+ 0.933(64) log10

(
Teff

40000K

)
+

−10.92(90)
[

log10

(
Teff

40000K

)]2

+ 0.85(10) log10

(
Z

Z�

)
,

(1.47)
if 27500K < Teff ≤ 50000K. For 12500K < Teff ≤ 22500K they give:

log10(−Ṁ) = −6.668(80) + 2.210(31) log10

(
L

105L�

)
− 1.339(68) log10

(
M

30M�

)
+

−1.601(55) log10

(
v∞

2vesc

)
+ 1.07(10) log10

(
Teff

40000K

)
+

+0.85(10) log10

(
Z

Z�

)
.

(1.48)
In Eq. 1.48 and Eq. 1.47, the numbers in parenthesis indicate the estimated error on the last
digits of the coefficients, as it is reported in [25]. This error is usually neglected in stellar
evolution calculations.

Note that this algorithm is valid only for stars in the temperature ranges indicated (even
if several extrapolations have been suggested in the literature, e.g. [67]). It is not valid for
stars on the cool (red) side of the HR diagram.

1.4.6 Kudritzki et al.

The algorithm proposed by Kudritzki et al. [68] differs conceptually from the those described
so far. It is an analytic solution for the system of equations describing a stationary, isother-
mal, spherically-symmetric, ideal (neither viscosity nor heat conduction) gas flow with no
magnetic fields and no rotation. This system consists of the Euler equation, the continuity
equation and an (isothermal) equation of state (EOS). The Euler equation for a stationary
(∂t = 0) spherical-symmetric (∂θ ≡ ∂ϕ = 0) ideal gas reads:

v
dv
dr

= −1
ρ

dP
dr
− GM

r2 + gph , (1.49)

where gph is the radiative acceleration, a source term representing the effects of photon-
gas interaction, i.e. Thomson scattering on free electrons and line scattering and absorption
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effects. In the spherically symmetric case, the radiative acceleration can be parametrized
following Castor et al. (CAK) [69], as

gph = gTh
rad

1 + k
(

κThρcs

dv/dr

)−α
(

2ne√
1− (1− (R/r)2

)δ

CF
(

r, v,
dv
dr

) , (1.50)

where gTh
rad is the radiative acceleration due to Thomson scattering, and the second term in

the brackets is the so-called “force multiplier”, i.e. the line acceleration in units of gTh
rad. It

depends on the Thomson opacity κTh, the speed of sound cs, the radius of the star R, the
electron number density ne, and three free parameters k, α, and δ, used to parametrize the
line opacity. k can be interpreted roughly as the number of lines strong enough to have an
effect, and α as the slope of the distribution of the number of lines as a function of their
strength.

The parameter δ and the correction factor CF are used to include the “finite cone-angle
effect”, i.e. the fact that incoming photons may not be in the radial directions [68]. CF is
the ratio between the opacity as a function of the incoming angle and the opacity in the

radial direction, and it can be expressed as a function of the radial coordinate x def
= r/R and

h def
= d log10(x)/d log10(v), cf. Eq. (4) in [68], as

CF
(

r, v,
dv
dr

, α

)
=

(
1

α + 1

)(
x2

1− h

)(
1−

(
1− 1

x2 +
h
x2

)α+1
)

. (1.51)

If both δ and CF were equal to one, the parametrization would be valid only in the “radial
streaming” limit [70, 71]. While this is a good approximation in the outer portion of the
wind, where r � R (R is the stellar radius, i.e. the inner boundary at the photosphere), it
is quite poor in the inner portion, where the mass loss rate is set and photons traveling in
non-radial direction have a relevant effect.

Note that α, k and δ parametrize not only the interaction between photospheric photons
and metal lines, but also the feedback on the radiation field, whose energy density is in-
creased by the contribution of scattered and re-emitted photons.

The reader is referred to [55, 69, 70] and references therein for more details on this
parametrization.

The EOS is isothermal:

P = ρc2
s , T = const.⇒ cs = const. , (1.52)

Note that the thermal structure of the wind T ≡ T(r) has a small influence on the mass loss
rate, although it influences the ionization fraction. Pauldrach et al. [70] state that the most
noticeable effect is a change in the position of the critical point (see below). Thus, Kudritzki
et al. consider the isothermal EOS of Eq. 1.52 for the sake of simplicity.

Finally, the continuity equation completes the system:

Ṁ = 4πr2ρv . (1.53)

Substituting Eq. 1.53 and Eq. 1.52 into Eq. 1.49, we obtain

v
dv
dr

= −c2
s

4πr2v
Ṁ

d
dr

(
Ṁ

4πr2v

)
− GM

r2 + gph , (1.54)
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which does not allow an analytic solution without further assumptions. The authors of [68],
following CAK, rewrite Eq. 1.54 as

F(x, y, v) = 0 , (1.55)

where x = r/R is the dimensionless radius, and y = r2v(dv/dr). In this form it is easier to
see that there is a critical point where

δF
δy

= 0 , (1.56)

and the regularity of the solution requires:

δF
δx

+
δF
δv

δv
δx

= 0 . (1.57)

To find a solution, the authors impose a “β−law” velocity field on the outflowing matter
composing the wind,

v(r) ' v∞

(
1− R

r

)β

, (1.58)

beyond the critical point. β is a free parameter, whose value has little influence on the result,
and v∞ is the asymptotic velocity of the wind. The velocity field given by Eq. 1.58 is found
to be close to the numerical solution, and it is a common assumption of many stellar wind
models [5]. Note that this assumption means that the authors do not solve for the dynamics
of the wind, but instead they just solve self-consistently for the density and force imposing
a velocity field.

With this assumption, using β = 1, and assuming also v� cs, which is likely in the outer
part of the wind, they use Eq. 1.56 and Eq. 1.57 to find

Ṁ ≡ Ṁ(α, δ, k, M, L, vth) =

D̃(α, δ, v(r = rcrit), v∞)

(
σThkL
4πc

)1/(α−δ) ( 4πα

σThvth

)α/(α−δ) ( 1− α

GM(1− ΓE)

)(1−α)/(α−δ)

,

(1.59)
where σTh is the cross section for Thomson scattering, vth is the thermal velocity of protons,
k, α, and δ are free parameters, L is the luminosity, ΓE = L/LEdd is the Eddington ratio and
D̃ is a known function of the free parameters and the velocity of the wind at the critical point
and at infinity, [68].

The suggested values for the free parameters are α = 0.657, β = 1, δ = 0.095, and
k = 0.085, following the algorithm of Wellstein & Langer [72]. These values were derived
to reproduce the observed mass loss properties of ζ Puppis by Pauldrach et al. [73]. The
main limitation of this algorithm is that the free parameters α, β and k are not constant, but
rather depend on the optical depth. The values suggested should be interpreted as depth-
independent mean values.

1.4.7 Nugis & Lamers

The mass loss algorithm derived by Nugis & Lamers [74] applies only to WR stars, i.e.
hydrogen-poor stars with a very strong wind manifested by strong, broad emission and P
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Cygni lines. The wind mass loss rate of these stars depends heavily on their chemical com-
position: the metallicity and also the helium mass fraction Y. This is because the amount of
helium in the stellar atmosphere changes the mean molecular weight, influencing the tem-
perature and therefore the ionization fraction and the level populations of all other atoms
and ions.

Nugis & Lamers [74] derive a mass loss rate algorithm as a function of the luminosity
and the chemical composition starting from a sample of observed galactic WR stars. Their
sample consists of two subsets: those for which both mass and distance (i.e. luminosity)
are known, thanks to binarity or membership association in open clusters; and those for
which the luminosity is not known. They use stars from the first subset to derive an em-
pirical bolometric correction (i.e. the difference between the bolometric luminosity and the

observed luminosity, BC def
= L− Lobs). They then use a theoretical mass-luminosity relation

to infer the luminosity of stars in the second subset, and correct it with the previously de-
rived bolometric correction. Note that the mass-luminosity relation is derived using only
the age of the star and its spectral type, therefore it can be used self consistently for the
luminosity determination, which does not enter as an input [74].

The mass loss rate for the stars in the sample, determined from observations of the radio
continuum, are then fitted as follows. The authors make two independent fits for stars of
different composition and then merge them together in a single formula, valid for all WR
stars:

log10(−Ṁ) = −11.0 + 1.29(14) log10(L/L�) + 1.73(42) log10(Y)
+0.47(09) log10(Z) .

(1.60)

In Eq. 1.60, the number in parenthesis indicate the estimated uncertainty in the last digits of
the coefficients.

It is worth mentioning that the authors of [74] state that the mass loss algorithm for WR
stars cannot be expressed as a function of Teff and/or the radius of the star R. This because
WR winds are so strong (i.e. dense) that they are optically thick and their velocity gradient is
very steep. Therefore, the outward energy flux (or, equivalently, Teff) is strongly dependent
on the wavelength observed, or, in other words on the velocity and density structure of the
wind. This prevents using Teff to parametrize the wind mass loss rate self-consistently.

1.4.8 Hamann et al.

This wind scheme, which applies only to WR stars, is a combination of the algorithms from
[75–77].

It is derived from a spherically symmetric, homogeneous and stationary (but not static,
i.e. ∂t = 0 but v 6= 0) expanding WR atmosphere model. The authors assume an ad-hoc
velocity structure v ≡ v(r): for the supersonic part of the wind they assume a β-law in
the form of Eq. 1.58 with β = 1, while, for the subsonic part, v(r) is chosen such that the
density approaches the thermal velocity. Note that since the velocity field is imposed, the
acceleration is not computed.

This allows the authors to adopt a very simple chemical composition, since they do not
need to evaluate the line-driven acceleration and do not need to keep track of all atomic
species and their level populations. The authors include only ions of H and He, and the
radiation field is considered only to determine non-LTE populations of these species, which
are necessary to produce synthetic spectra to compare with observations. The temperature
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stratification is derived with the assumption of a grey LTE model, assuming a value of Teff
at the base of the atmosphere determined by the stellar luminosity L and the radius R via a
black body relation (Eq. 1.38), in contrast with the suggestion of Nugis & Lamers [74].

A synthetic spectrum is derived from the simulations and a best fit to the observed line
profiles for ions of H and He is obtained by variation of the stellar parameters (i.e. the radius
of the inner boundary of the atmosphere and L, the surface hydrogen mass fraction Xs and
Ṁ) [76]. Once the stellar parameters are known from this fit, a mass loss formula is derived
for high luminosity WR stars, i.e. log10(L/L�) > 4.5. The algorithm for the low luminosity
WR stars, i.e. log10(L/L�) ≤ 4.5, is derived with a similar technique [75], but the spectra
fitted are from a small sample of Helium stars (i.e. stars during He shell burning with most
of the mass in a C/O core, without H lines in their spectra).

The resulting mass loss algorithm is

log10(−Ṁ) =

−12.25 + 1.5 log10

(
L

L�

)
− 2.85Xs if log10(L/L�) > 4.5 ,

−35.8 + 6.8 log10

(
L

L�

)
if log10(L/L�) ≤ 4.5 .

(1.61)

Variant models that include inhomogeneities in the wind have been proposed in [77].
Specifically, the authors suggest reducing the wind efficiency by a factor between 2 and 3
to account for the wind clumpiness. Note that this algorithm is derived considering only
spectral lines for a few ions.

1.4.9 Motivation to introduce non-wind Mass Loss Processes in Simulations of
Massive Star Evolution

Since recent studies suggest that the wind mass loss rates commonly used in stellar evolu-
tion calculations may be overestimated by a factor between 2 to 10 [e.g., 7, 49], e.g. because
of wind clumpiness, the lower, revised rates imply that another mass loss channel(s) must
exist to produce pre-SN stellar structures with little or no hydrogen-rich envelope (e.g. the
progenitors of type IIb/Ib/Ic SNe). Such additional mass loss mechanism(s) may also be rel-
evant for producing YSG and BSG pre-SN structures, and thus be important for the solution
of the RSG problem (see §1.2.3 and [29]).

Several additional mechanisms have been proposed to remove part or all of a massive
stars’s hydrogen-rich envelope. Theoretical studies suggest that single stars may shed their
envelopes through pulsational instabilities and/or wave driven mass loss [e.g., 50], and
there are many observational signatures of episodic events, like luminous blue variable
(LBV) eruptions22, or circumstellar shells and rings [e.g., 79, 80].

Other mass loss mechanisms, e.g. Roche Lobe Overflow (RLOF), depend on the presence
of a companion star. By definition, the Roche Lobe is the volume around one of the stars of
the binary within which matter is gravitationally bound to that star. Therefore, whenever a
parcel of gas exits the Roche Lobe (e.g. because of the inflation of the star during its evolu-
tion), it is no more bound to the star. Mass loss mechanisms depending on the presence of
a companion star may be especially relevant since virtually all massive stars are in multiple
systems and up to ∼ 70% of them interact with their companion before core collapse [20].
RLOF is likely to happen when a massive star expands after leaving the main sequence. The
precise moment at which RLOF begins and whether it leads to a common envelope phase

22However, it is possible that binarity plays a role in formation and/or evolution of LBVs, e.g. [78].
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and/or merger depend on the properties of the binary (mass ratio, period, eccentricity, an-
gular momenta, etc.). Further, the structure of the star at the onset of RLOF, along with the
binary parameters, determine whether the star undergoes dynamically stable or unstable
mass loss.

However, it is possible that (some of) these mechanisms cannot completely remove the
hydrogen envelope, and that regular line or dust driven stellar winds take the burden of re-
moving the remaining hydrogen-rich layer in the subsequent evolution. Another possibility
to consider are “non-catastrophic” mass loss events, such as small eruptions, which are also
neglected in stellar evolution calculations, as their timescale, and consequently the possible
stellar response are not known.

All of the mechanisms mentioned above are intrinsically dynamical, and/or multidimen-
sional, and contrary to winds, they cannot be simulated using common, one-dimensional,
steady-state techniques. This is because they may happen on timescales that are shorter than
the thermal timescale of the star, preventing a hydrostatic re-adjustment of the structure to
the mass loss. Moreover, contrary to winds, they can have energy loss rates that are large
fractions of the stellar luminosity. There is also considerable uncertainty in the processes that
trigger and terminate these events. Therefore, the self-consistent simulation of such dynam-
ical mass loss mechanisms is not possible with current stellar evolution codes. Thus, these
events are usually neglected in stellar evolution calculations, although, if the wind mass
loss rates are indeed overestimated, they are far from rare, since ∼ 30% of the observed SNe
lacks hydrogen lines and comes from progenitors without an extended hydrogen envelope,
[29].

Pre-SN structures with little or no hydrogen envelope have been produced by increasing
the wind mass loss rate [e.g. 46]. However, this is unrealistic: stellar winds are radiatively
driven phenomena, and the corresponding mass loss rates depend on the physical condi-
tions in the outer portion of the star, (e.g. luminosity, effective temperature, and metallicity),
while the process that actually removes the hydrogen envelope may not be a radiative phe-
nomenon with the same kind of dependencies. In fact, for most of the proposed mass loss
mechanisms, the amount of mass lost could be determined by the inner structure (location
of the burning shells, density profile, etc.) at a given moment of the evolution. Additionally,
the amount of mass removed at each timestep, and the corresponding readjustment of the
structure, will be very different in the case of a steady wind-like mass loss and in the case of
a rapid, impulsive, mass loss event, that occurs all at once with a fixed initial structure.

The exploration of the effects of catastrophic mass loss events on the stellar structure is
still in a very infant stage, because of the many technical difficulties that come with it. More
work to understand these phenomena is needed, especially for their relevance in explaining
the origin of the progenitors of (almost) hydrogen-free core-collapse SNe. Moreover, it is
possible that such events may also play a role in the solution of the RSG problem.
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Methods

dove Alinardo sembra dare informazioni preziose e Guglielmo rivela il suo metodo per arrivare a una
verità probabile attraverso una serie di sicuri errori

[U. Eco, Il Nome della Rosa, Quarto Giorno – Vespri]

2.1 The MESA Code

MESA (Modules for Experiments in Stellar Astrophysics) [39, 81] is an open-source one-
dimensional (1D) stellar evolution code, organized as a set of independent threadsafe1 mod-
ules. Each module deals with one aspect of the physics (e.g. EOS, opacities, the nuclear re-
action network, etc.) or the numerics (i.e. matrix operations2, interpolation of data sets, nu-
merical error handling, etc.). The module that performs one step of the stellar evolution, by
calling all other modules in the appropriate order, is the module star (see $MESA DIR/star

in a standard installation and [81]). The code is written in FORTRAN 90, and is designed to
be easy to modify, thanks to the possibility of adding custom algorithms for many purposes
(wind mass loss, meshing, stopping conditions, output settings, etc.) locally, without the
need to modify and recompile the whole code (see §2.2). Simulations presented in this work
are carried out with the release 6794 of MESA (July, 20, 2014).

Extensive descriptions of the code capabilities are available in [39, 81], even if its rapid
development makes them outdated in some parts. It is not my goal to complete or update
these descriptions, and in the following sections I give a brief general description of the
numerical implementation of the code (§2.1.1), and then focus on the features I used (and
modified) to perform the systematic study of massive star mass loss presented in this work
(§2.1.3, §2.2.2, §2.2.1). In §2.3 and §2.4 I describe the setup used for the systematic study of
wind mass loss, and for the effects of violent, eruptive mass loss events, respectively.

2.1.1 Overview of the Numerical Implementation

The equations describing stellar structures are a set of coupled non-linear differential equa-
tions, which cannot be solved analytically (see also below). Therefore, stellar astrophysics
relies on numerical simulations, which requires a number of (numerical and physical) ap-
proximations (e.g. finite differences instead of derivatives) to get a solution.

1Multicore processor capabilities can be exploited using OpenMP parallelization.
2Sparse matrix operations are handled with the “SPARSEKIT” solver, see [81].
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MESA star is a Henyey-like [21] code, which uses the MESA modules to solve the equa-
tions of a stellar structure, with automatic mesh refinement, adaptive time-step control, and
analytic jacobians. In a Henyey-like code, the solution for the stellar structure at a given
time is found starting from a trial solution, and correcting it with (small) variations of all
the parameters at all points simultaneously until the required degree of accuracy is reached.
The iterations on the primitives is performed using a generalized Newton-Raphson scheme,
see below. This method is particularly convenient for problems, such as stellar evolution,
for which boundary conditions are given at both ends of the computational domain (i.e. at
the center – e.g. Lc = 0 and Mc = 0 – and at the surface – e.g. Teff and Pout). This is because
the Henyey method (in contrast with the shooting method) varies the boundary condition,
and finds more easily a solution within the degree of accuracy required [21].

Meshing

Figure 2.1: Schematic representation of the structure of the mesh in MESA. Note that cells
are numbered from 1 on the surface, to the maximum value in the center. This figure is a
modification of Fig. 9 in [81].

At the beginning of each step, MESA defines a grid of points (cell boundaries), and eval-
uates finite differences between the adjacent points instead of derivatives. The meshing
algorithm is described extensively in §6.5 of [81]. The number of points is determined
automatically by full-filling some user defined conditions. In a typical situation, the user
controls the number of points – and thus the spatial resolution – using two parameters,
mesh delta coeff and mesh delta coeff for highT. These multiply the maximum rela-
tive difference allowed between two adjacent cells for several quantities (log10(P), log10(T),
log10(R), log10(Y), where Y is the local abundance of helium).

Note that a lower mesh delta coeff (mesh delta coeff for highT) means that smaller
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variations are enforced, thus the code divides the star in a larger number of cells and higher
spatial resolution is obtained (at the cost of computational time and memory). Moreover,
MESA includes parameters to increase the resolution locally in critical regions of the star
(e.g. where there is a large variation of the energy generation rate or of the abundance of
certain isotopes).

After each evolutionary step (see also below), MESA tries to use the mesh from the pre-
vious solution for the new (evolved) structure. If one (or more) of the criteria determining
the mesh is not met, MESA re-meshes the structure by splitting some cells into two parts,
and/or merging adjacent cells. The interested reader should consult the MESA documenta-
tion (see $MESA DIR/star/defaults/controls.defaults in a standard installation).

MESA is a Lagrangian code, i.e. it uses as independent coordinate a Lagrangian coordi-
nate, namely the mass of each k − th cell mk. Note however that it is hydrostatic, i.e. time
independent code. Fig. 2.1.1 shows a schematic representation of the mesh in MESA. In gen-
eral, extensive quantities (r, L, m, etc.) are given at the boundary of each computational cell,
while intensive quantities (T, ρ, P, etc.) are averaged in mass over the cell.

Timestep control

To follow the temporal evolution of the stellar structure, the time dimension must be dis-
cretized – together with the spatial dimension(s). For this purpose, a timestep is defined
for each iteration. The timestep ∆t is the (finite) amount of time used to compute time-
derivatives instead of the (infinitesimal) dt. For example, in a forward finite differences
scheme the time derivative for the k− th step is

d f
dt

=
f (tk+1)− f (tk)

tk+1 − tk
→ ∆tk = tk+1 − tk , (2.1)

where ∆tk is the timestep for the k− th step. However, note that MESA is an implicit code.
The timestep should be sufficiently small to resolve all time variations, but sufficiently large
to allow a reasonable run-time3. This makes the selection of the timestep a complex process,
since several timescales are involved in the evolution of a star (nuclear, free fall, Kelvin-
Helmholtz, mass change, sound crossing time, etc.), and they are usually very different
from each other.

MESA does the timestep selection in a two-stage process, described in §6.4 of [81]. First,
a scheme based on “Digital Control Theory” is used to estimate a timestep. This means
that Fourier transforms are used to evaluate the characteristic frequencies of the system,
and a timestep smaller than all the corresponding periods is chosen. At this stage MESA
only checks if the control variable vc, i.e. the unweighted average of the relative variation of
log10(T), log10(ρ), log10(Y) and log10(r) across all cells, is smaller than a user-defined value
varcontrol target, whose default is vt = 10−4. The timestep proposed during this stage
is defined to be a function of the previous two timesteps, to improve numerical stability. If
∆tk−1 and ∆tk are the timesteps for the k− th and (k− 1)− th steps, and vc,k−1 and vc,k are
the corresponding control variables, then the timestep proposed for the (k + 1)− th step is

∆tk+1 = ∆tkg
(

g(vt/vc,k)g(vt/vc,k−1)

g(∆tk/∆tk−1)

)1/4

, (2.2)

3Moreover, if the timesteps taken are too small, actual physical processes in nature may not have enough
time to make a physical region as large as a cell of the mesh reach equilibrium.
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where g(x) def
= 1 + 2 tan−1(0.5(x − 1)). Then, in the second stage, MESA does additional

checks that can further reduce the timestep yielded by Eq. 2.2. These check that the vari-
ations of several quantities (maximum nuclear burning rate, maximum change in surface
luminosity, etc.) are lower than the corresponding thresholds. It is possible to customize
the thresholds and implement other checks to enforce smaller timesteps (see §2.2 and §2.2.1,
and $MESA DIR/star/defaults/controls.defaults for the default checks).

Reformulation of the Stellar Structure Equations for Numerical Stability

The stellar structure equations4 are reformulated (see §6.2 of [81]) to improve the numerical
stability of the MESA code. To limit round-off errors, the continuity equation is written as:

ln(rk) =
1
3

ln
[

r3
k+1 +

3
4π

dmk

ρk

]
, (2.3)

where ρk is the average density in the cell, and dmk
def
= mk −mk−1 is the mass of the compu-

tational cell (cf. Fig 2.1.1).
The hydrostatic balance equation is written as

Pk−1 − Pk

0.5(dmk−1 − dmk)
=

(
dP
dm

∣∣∣∣
k

)
static

+

(
dP
dm

∣∣∣∣
k

)
dynamic

= −Gmk

4πr4
k
− ak

4πr2
k

, (2.4)

where Pk is the (mass average) total pressure in the k− th cell, mk is the total mass enclosed
from the center to the outer boundary of the cell, dmk = mk −mk+1 is the mass in the k− th
cell, rk its radius and

ak
def
=

dvk

dt
, vk = rk

d ln(rk)

dt
, (2.5)

is the Lagrangian acceleration, with vk the cell velocity computed as the variation of the
radius between two successive timesteps. Eq. 2.4 includes both the hydrostatic and the so-
called “dynamical pressure”5 term, which are the first and second term on the right hand
side, respectively. The dynamical term applies only if the user specifies that velocities are
to be computed explicitly, in which case vk is divided by the local sound speed to improve
numerical stability. Otherwise ak is set to zero.

The energy transportation equation is

Tk−1 − Tk

0.5(dmk−1 − dmk)
= −∇loc,k

(
dP
dm

∣∣∣∣
k

)
static

< Tk >

< Pk >
, (2.6)

where Tk is the cell temperature, ∇loc
def
= d log(T)/d log(P) and

< fk >
def
=

fk−1dmk + fkdmk−1

dmk−1 + dmk
≡

fk−1
dmk−1

+ fk
dmk

1
dmk−1

+ 1
dmk

, (2.7)

is a weighted average value of the function f (=T or P) between the two adjacent cells. For
numerical stability Eq. 2.4 is divided by < Pk > and Eq. 2.6 is divided by < Tk >.

4See e.g. [23, Ch. 21] for the original formulation of these equations.
5The “dynamical pressure” is not really a pressure, but a correction to account for the movement of mass. It

is usually a very small term.
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Energy conservation equation reads:

Lk − Lk+1 = dmk{εnuc − εν + εgrav} , (2.8)

where ε i are the local energy generation rate per unit mass:

• εnuc is the total energy generation rate from all nuclear reactions, minus the energy
going into neutrinos (which leave immediatly the star). It comes from the JINA6

database, as tables in function of T and ρ. MESA does the interpolation between the
available data automatically;
• εν is the thermal neutrino loss rate, that is significant for late burning stages in massive

stars. This term includes only thermal neutrinos because those from nucleosynthetic
processes are already subtracted from the nuclear energy generation rate εnuc;
• εgrav = −Tds/dt is the so-called “gravitational work”, which expresses the specific

rate of change of gravitational energy because of the gas expansion or contraction.
The time derivative of the specific entropy s is evaluated as a function of the thermo-
dynamical quantities and the EOS, see Eq. 12 in [81].

The EOS uses T and ρ as independent variables, and it is put in tabular form. It also
depends implicitly on the chemical composition of the gas, e.g. free electrons and ionic
species available. EOS tables are loaded from different sources, depending on the temper-
ature and density range. Computation shown in this work use the default option, which
corresponds, for the relevant density (−10 . log10(ρ/[g cm−3]) . 10) and temperature
(3 . log10(T/[K]) . 10) ranges to the OPAL [83] and HELM [84] databases.

Finally, the equation for the chemical abundance Xi,k of the i− th species in the k− th cell
reads

Xi,k(t + ∆t) = Xi,k(t) +
(

dXi,k

dt

)
nuc

∆t +
∆t

dmk
(Fi,k+1 − Fi,k) , (2.9)

where
Fi,k

def
=

σk

0.5(dmk−1 − dmk)
(Xi,k − Xi,k−1) . (2.10)

In Eq. 2.9, the second term on the left hand side is evaluated from the net module (see
$MESA DIR/net) and the third term includes all mixing processes (chemical diffusion, radia-
tive levitation, overshooting, shear, rotational mixing, etc.). σk is an appropriate coefficient7,
and ∆t is the timestep.

The set of isotopes that MESA traces is defined in the nuclear reactions network. This is
specified by choosing between optimized built-in options, or as a list of isotopes and reac-
tions. MESA keeps track only of the isotopes listed in the network. The initial abundances
are specified through hydrogen abundance, helium abundance and metallicity (X, Y, and
Z, respectively), and by default a scaling with the solar value is assumed for each isotope.
This assumption is typical in stellar evolution codes, but it is questionable. Since there is
evidence that isotopes are synthetized in a large variety of astrophysical processes (stellar
cores and shells, novae, supernovae, binary neutron star mergers, etc. See, e.g., [3, 4, 85] and
references therein) and nothing guarantees that the scaling with solar abundances is correct,
MESA also includes options to specify the initial composition as a list of isotopes with the
corresponding abundances.

6An option to use the NACRE [82] database is provided.
7Note that, in principle, the instabilities could cancel out, instead of summing, even if usually one instability

is dominant and develops faster than all the others.
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Algorithm to Solve the Equations
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Figure 2.2: Schematic representation of one row of the matrix representing the algebraic
system that MESA solves to find δyi at each i− th iteration of the Newton-Raphson solver.
Black dots indicate nonzero entries (note the diagonal terms in the lower right sub-block
of the left and right blocks, representing the contribution of the chemical mixing between
adjacent cells). This is Fig. 47 of [39].

The full set of coupled nonlinear differential (transformed into difference equation by the
discretization) algebraic equations (Eq. 2.4, Eq. 2.3, Eq. 2.6, Eq. 2.8, Eq. 2.9 and the tabulated
EOS) is simultaneously solved for the structure (T, ρ, L,etc.) and composition (Xi ∀i in the
nuclear reactions network). MESA uses a generalized Newton-Raphson solver8 to integrate
the full set of equations (see §3 in [81] and the appendix in [39]). The equations are written
in the form

0 = F(y) = F(yi + δyi) = F(yi) +

[
dF(y)

dy

]
i
δyi +O((δyi)

2) , (2.11)

where yi is a trial solution (usually, the first iteration uses as its first guess the solution of
the previous timestep, just re-meshed and with the mass change from winds or accretion
applied), F is the (vector valued) residual, i.e. the distance between the trial solution yi and
the (unknown) exact solution y, and the term in brackets is the Jacobian matrix, calculated
analytically. For the calculation of the Jacobian matrix, each MESA module evaluates not
only the output quantities, but also all the partial derivatives with respect any input variable.

Neglecting the term of O((δyi)
2), Eq. 2.11 provides the correction δyi needed to go from

the trial solution yi to an improved solution yi+1
9. Iterating this process – usually more

8i.e. based on the algorithm developed to solve the equation f (x) = 0 with an iterative procedure:

xn+1 =

(
xn −

f (xn)

f ′(xn)

)
→ x∞ , with f (x∞) = 0 .

9The improved solution is not the exact solution, because of the approximation used to neglect terms of
O((δyi)

2).
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than twice and less than ten times – a solution yj with a “sufficiently small” residual F(yj)
is found and accepted as a good approximation to the exact solution, yj ' y. Note that the
definition of what is “sufficiently small”, or, in other words, the maximum value of the term
of order O((δyi)

2) neglected is what limits the gridding. This procedure requires to solve
the algebraic Eq. 2.11 for δyi at each i − th iteration of the Newton-Raphson solver, which
means solving a (very large) matrix. A row of such a matrix is depicted in Fig. 2.2.
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Figure 2.3: T ≡ T(M) for MZAMS = 30M�, Z = Z� model at ZAMS. Note the use of a linear
scale on both axes, which (barely) allows to resolve the readjustments of the structure.

Fig. 2.3 shows the temperature profile at each iteration of the Newton-Raphson solver for
a model at the beginning of the main sequence. Note the use of a linear scale on both axes:
the relative adjustment of each quantity is small and not visible on a logarithmic scale.

When MESA starts from the ZAMS, it loads the initial model from a built-in set of mod-
els at solar metallicity [81]. The metallicity (and initial Y) can then be changed with an
initial “pseudo-evolution” (i.e. evolution at fixed time). There are 32 initial models in the
built-in set, with masses in the range [0.8M�, 100M�], and MESA interpolates between
those to create ZAMS stars of any requested mass (see the file $MESA DIR/data/star data

/zams z2m2 y28.data).

2.1.2 Run time

MESA is a very efficient tool for many stellar astrophysics problems not involving extreme
regimes (such as the late stages of nuclear burning, the Helium flash in low mass stars,
etc.). For example, Fig. 2.4 compares the run-times of three stars computed from ZAMS
to TAMS. The run times are less than a minute in each case. The MZAMS = 1M� model
(red curve) is computed in 83 timesteps (8.863 seconds), the MZAMS = 2M� model (orange
curve) is computed in 128 timesteps (13.681 seconds), and the MZAMS = 15M� (blue curve)
model in 65 timesteps (8.279 seconds). Note that the MZAMS = 1M� model is fast and takes

43



CHAPTER 2. METHODS

3.73.83.94.04.14.24.34.44.5
log10(Teff/[K])

0

1

2

3

4

5

lo
g 10

(L
/

L �
)
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1M�, age=8.54× 109 [yr], trun = 8.863 [s]

2M�, age=8.99× 108 [yr], trun = 13.681 [s]

15M�, age=1.07× 107 [yr], trun = 8.279 [s]

Figure 2.4: Comparison between the run times for the main sequence evolution
of three Z� stars with different MZAMS. The models in this figure are com-
puted with the default MESA settings (see $MESA DIR/star/controls defaults and
$MESA DIR/star/inlist massive defaults for MZAMS = 15M�) on a quad-core machine
using GFortran of the Department of Physics at the University of Pisa.

a relatively small number of timesteps to be computed because there is a built-in ZAMS
model of this mass, while for the MZAMS = 15M� model the speed up comes from the use
of the default settings for massive stars, which have looser spatial and temporal resolution.

The use of higher resolution or larger nuclear reactions networks10, or the computation of
more challenging evolutionary stages (see e.g. §1.3), can take much longer than the run-time
shown in Fig. 2.4, often up to several days of computation.

2.1.3 MLT++

As mentioned in §1.3.1, the first challenging obstacle found in the simulation of massive
stars is the presence of radiation dominated, nearly super-Eddington convective envelopes.
In this environment, a numerical (and probably physical) instability develops unstable gas
density and pressure inversions.

A hydrostatic code, such as MESA, tries to take smaller timesteps to deal with the density
inversion (which, if it really forms in nature, is likely develop a dynamical Rayleigh-Taylor
instability), and it becomes impossible to pass this stage. This problem affects stars with
MZAMS ≥ 20M� and becomes more severe for higher initial masses [39], so of the set of
models presented here, only those with MZAMS = 15M� avoid it.

To push the evolution through stages in which this problem arises, MESA adopts the fol-
lowing artificial workaround called “MLT++” – which must not be interpreted as a physical

10Higher spatial resolution and a larger nuclear network both increase the dimensions of the matrix partially
shown in Fig. 2.2, while higher temporal resolution increases the number of computational steps for a given
physical time.
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Figure 2.5: HR diagrams for different massive stars. The colors indicate the values of α∇
which is automatically computed at each timestep, see Eq. 2.13. Higher values correspond
to a larger reduction of the superadiabaticity (which is the term on the left-hand side of
Eq. 2.13). This is Fig. 42 of [39].

solution to the problem. The underlying idea is that when convection and radiation cannot
provide the required energy flux (see also §1.3.1), another mechanism (or a different treat-
ment of convection) may provide the flux missing to prevent the formation of the density
inversion11 (i.e. to maintain Lrad < Linv, cf. Eq. 1.20, see §1.3.1). However, even if such a
mechanism exists, no physical model is presently available for it. Therefore, when MESA
detects the onset of a nearly super Eddington, radiation dominated convective envelope, the
extra flux is attributed to convection (effectively increasing the free parameter αmlt).

In MESA, the onset of a nearly super Eddington radiation dominated envelope is defined
by (see §7.2 in [39] and the routine $MESA DIR/star/private/mlt info.f in a standard in-
stallation of the code) β

def
=

Pgas
Ptot
≤ 0.35 ,

ΓE
def
= L

LEdd
≥ 0.5 .

(2.12)

When the conditions of Eq. 2.12 are met and the superadiabaticity (i.e. the difference be-
tween the local temperature gradient and the adiabatic temperature gradient, see Eq. 2.13)
is larger than some user-specified threshold (whose default is 10−3), MESA modifies the

temperature gradient∇loc
def
= d log(T)/d log(P) to reduce the superadiabaticity and enforce

a (quasi-)adiabatic stratification. This prevents the onset of a gas density and pressure in-
version and allows MESA to avoid the numerical (and maybe physical) instability. More
specifically, ∇loc is modified in such way that the superadiabaticity

∇loc −∇ad → α∇ f∇ · (∇loc −∇ad) ∼ 0 , (2.13)

where α∇ ≡ α∇(β, ΓE) is an efficiency factor that progressively turns on the MLT++ as L

11The name “MLT++” stands for “MLT plus one” in a C-like syntax (Paxton, private communication). The
“plus one” mechanism may be a different physical process, or even simply a larger convective-flux obtained
with a multidimensional treatment of convection.
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approaches LEdd (the “modified” Eddington luminosity, see Eq. 1.14) in the radiation domi-
nated region; f∇ � 1 is the maximum permitted reduction of the superadiabaticity.

The drawback of MLT++ is that this procedure affects the stellar surface luminosity and
effective temperature (or radius), and consequently the mass loss rate. This approach also
neglects unknown mass loss mechanisms, e.g. the instability of a nearly super Eddington
radiation dominated envelope could be physical and trigger, at least in some cases, eruptive
mass loss events. Fig. 2.5 shows the value of α∇ in different stages of the evolution for
models with different MZAMS.

2.2 Modifications to the MESA Code

The design of MESA allows the user to call “personal” routines without the need of mod-
ifying the bulk of the code. This can be done locally in each directory from which the
code is run, inserting the user-provided routines in the run star extras.f file. An ex-
tensive documentation on the use of this tool has been produced by the community of
MESA users (see http://mesa.sourceforge.net/run_star_extras.html#toc-1-1). The
reader is referred to the official MESA websites (http://mesa.sourceforge.net/ and http:

//mesastar.org/) and mailing list (http://sourceforge.net/p/mesa/mailman/) for more
details and support, respectively.

2.2.1 Implementation of Customized Timestep Controls

The timestep selection algorithm described in §2.1.1 does not explicitly check if the MESA
timestep is smaller than the various (global) timescales of the star12. Some preliminary tests
showed that this timestep can indeed exceed the Kelvin-Helmholtz timescale, especially
during the RSG phase. To avoid this, I implemented a customized timestep control (see
§A.2.13). In particular, I tightened the default MESA timestep controls by manually enforc-
ing

∆tn+1 ≤ min{tKH, tṀ, tnuc, tchem, tγ} , (2.14)

where ∆tn+1 is the timestep proposed at the end of the n− th step for the next (n + 1)− th
step, and all the timescales on the right hand side refer to the n− th step.

On the right hand side of the condition (2.14),

tKH
def
=

3
4

GM2

RL
, (2.15)

is the Kelvin-Helmholtz timescale based on the global variables (which can be smaller than
the timestep coming from the default implementation of the timestep controls in MESA,
release 6794);

tṀ
def
=

M
|Ṁ| , (2.16)

is the mass change (loss through winds or gain from accretion) timescale;

tnuc ∝
M

L/L�
, (2.17)

12In more recent MESA releases this check is now done explicitly, although the implementation is less strict
than the one presented here.
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Figure 2.6: Radius evolution for a MZAMS = 15M�, Z� simulation without mass loss. The
blue curve is computed with the default timestep control of MESA, revision 6794, the red
curve uses the custom timestep (cf. 2.14).

is the nuclear timescale;

tchem
def
= min

k,i

 Xi,k

Ẋi,k

∣∣∣∣
burn

+ Ẋi,k

∣∣∣∣
mix

 , (2.18)

is the chemical evolution timescale, where the denominator is the sum of the time deriva-
tives of the abundances because of nuclear burning and mixing processes. Finally,

tγ
def
=

(
R− Rconv

λγ

)2

(δt) , (2.19)

is the photon diffusion time across the radiative portion of the envelope (whose outer
and inner radii are the stellar radius R ≡ R(m = Mtot), and the convective core radius Rconv
13, respectively), assuming a random walk of the photons in the radial direction, with the
same probability of moving inward or outward at each step and with mean free path λγ.
The assumed time-scale for a single step of the photon (absorption/re-emission process) is
the inverse of the probability per unit time of an atomic/ionic transition induced by the
perturbation on the atomic hamiltonian by the photon, δt ∼ B−1

f i ≡ 10−8 s, where B f i is the
Einstein coefficient for stimulated emission. Note that δt is set by hand. tγ is an upper limit
on the timescale on which the radiative envelope readjusts to surface phenomena such as
mass loss, because not necessarily all of the envelope down to the edge of the convective
core is affected by what happens at the surface.

13When the core is radiative, Rconv = 0.
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Note that the right-hand side of (2.14) is evaluated with the quantities of the n− th step,
but it limits the (n + 1) − th step (the timestepping is forward). I find that, among all the
quantities on the right-hand side of (2.14), only the Kelvin-Helmholtz timescale tKH effec-
tively limits the timestep. All other timescales are always larger than the timestep proposed,
so the timestep is never reduced because of them.

Figure 2.6 shows the effect of the improved custom timestep control on the radius during
the SGB/RSG phase of a MZAMS = 15M�, Z� star computed without mass loss. Even if
the difference is not enormous, the improvement is meaningful, especially during the RSG
phase, when the mass loss rate is high (cf. Fig. 1.9) and depends on R (either directly or
through a Teff and L dependence).

2.2.2 Implementation of the Mass Loss Prescriptions

The wind mass loss of massive stars is usually divided into three separate phases whose
definition is somewhat arbitrary. In fact, in nature, the evolution is continuous - there is
no such thing as a threshold at which the mass loss rate changes abruptly. However, for
computational purposes, thresholds are needed to define the domain of each mass loss rate
algorithm. I adopted the following scheme, based on Teff and the surface hydrogen abun-
dance Xs, when the Kudritzki et al. algorithm is used during the hot phase:

• Cool phase: Teff < 15000 K;

• Hot phase (Kudritzki et al. only): Teff ≥ 15000 K;

• WR phase: Xs < 0.4 , ∀ Teff.

When the Vink et al. algorithm is used in the hot phase, slightly different thresholds are
adopted, following the suggestions of [67]:

• Cool phase: Teff ≤ 10000 K;

• Linear interpolation: 10000 K < Teff < 11000 K;

• Hot phase (Vink et al. only): Teff ≥ 11000 K;

• WR phase: Xs < 0.4 , ∀ Teff.

That is, when the Vink et al. algorithm is used during the hot phase of the evolution, a lin-
ear interpolation between it and the cool wind mass loss rate is used to transition smoothly
into the cool phase of the evolution.

These definitions are similar to those commonly adopted in the literature (see e.g. [18, 86,
87]). Note that the definition of the WR phase is the presence of a hydrogen-poor surface of
the star. This is very different from the observational definition of a WR star, which is based
on spectral features (hydrogen depletion and broad emission lines) that are not synthetized
by stellar evolution codes.

The threshold chosen to divide the cool and hot phase is motivated by the fact that the
radiation pressure is proportional to the product of the opacity and the flux (cf. Eq. 1.16),
which peaks between 10000− 15000 K because of iron recombination. Therefore, this tem-
perature is a physically meaningful threshold for switching between wind mass loss algo-
rithms.
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Table 2.1: Combination of wind mass loss algorithm used in the present work.

Hot phase Cool phase WR phase ID
Vink et al. §1.4.5 de Jager et al. §1.4.2 Nugis & Lamers §1.4.7 VdJNL
Vink et al. §1.4.5 de Jager et al. §1.4.2 Hamann et al. §1.4.8 VdJH
Vink et al. §1.4.5 Nieuwenhuijzen et al. §1.4.3 Nugis & Lamers §1.4.7 VNJNL
Vink et al. §1.4.5 Nieuwenhuijzen et al. §1.4.3 Hamann et al. §1.4.8 VNJH
Vink et al. §1.4.5 van Loon et al. §1.4.4 Hamann et al. §1.4.8 VvLH
Vink et al. §1.4.5 van Loon et al. §1.4.4 Nugis & Lamers §1.4.7 VvLNL
Kudritzkitzki et al. §1.4.6 de Jager et al. §1.4.2 Nugis & Lamers §1.4.7 KdJNL
Kudritzkitzki et al. §1.4.6 de Jager et al. §1.4.2 Hamann et al. §1.4.8 KdJH
Kudritzkitzki et al. §1.4.6 Nieuwenhuijzen et al. §1.4.3 Nugis & Lamers §1.4.7 KNJNL
Kudritzkitzki et al. §1.4.6 Nieuwenhuijzen et al. §1.4.3 Hamann et al. §1.4.8 KNJH
Kudritzkitzki et al. §1.4.6 van Loon et al. §1.4.4 Nugis & Lamers §1.4.7 KvLNL
Kudritzkitzki et al. §1.4.6 van Loon et al. §1.4.4 Hamann et al. §1.4.8 KvLH
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Figure 2.7: Mass loss rate as a function of time around the bistability jump of the Vink et al.
mass loss rate (§1.4.5) in a M = 15M�, Z = Z� model. The black dashed line is the effective
temperature Teff, reached near TAMS in these simulations. The blue curve corresponds to
the mass loss rate yielded by the default MESA routine, the red curve (smoother) is the mass
loss rate from the customized mass loss routine described in §2.2.2.

Each algorithm combination used in this work is built selecting a specific wind mass loss
rate for each of the phases described above. The combinations used are summarized in
Tab. 2.1. I give in Tab. 2.2 the scaling of each mass loss rate with the considered stellar pa-
rameters so that the reader can easily compare the sensitivity of each algorithm to different
quantities.

Not all wind mass loss rates compared in this work are part of the default release of
MESA. To modify the criterion to switch between different algorithms (according to the def-
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Table 2.2: Ṁ scaling with physical quantities (luminosity L, mass M, escape velocity vesc
and final velocity v∞ of the wind, thermal velocity vth, effective temperature Teff, radius R,
Eddington ratio ΓE = L/LEdd, surface hydrogen and helium abundances and metallicity,
Xs, Ys, and Zs, respectively). The scaling are obtained from the algorithms described in §1.4,
and errors and overall multiplying factor are omitted for the sake of brevity.

ID VdJNL VNJNL VvLNL VdJH VNJH VvLH

Hot
L2.210M−1.339

(
v∞

2vesc

)−1.601
T1.07

eff Z0.85 if Teff < 22.5 kK

L2.194M−1.313
(

v∞
2vesc

)−1.226
Z0.85T(0.933−10.92 log(Teff/40kK))

eff if Teff > 27.5 kK

Cool L1.769T−1.676
eff L1.24M0.16R0.81 L1.05T−6.3

eff L1.769T−1.676
eff L1.24M0.16R0.81 L1.05T−6.3

eff

WR L1.29Y1.73
s Z0.47

s

L1.510−2.85Xs if log10(L/L�) > 4.5

L6.8 if log10(L/L�) ≤ 4.5

ID KdJNL KNJNL KvLNL KdJH KNJH KvLH

Hot L1.779v−1.169
th [GM(1− ΓE)]

0.610

Cool L1.769T−1.676
eff L1.24M0.16R0.81 L1.05T−6.3

eff L1.769T−1.676
eff L1.24M0.16R0.81 L1.05T−6.3

eff

WR L1.29Y1.73
s Z0.47

s

L1.510−2.85Xs if log10(L/L�) > 4.5

L6.8 if log10(L/L�) ≤ 4.5

initions above) and control separately the efficiency of each algorithm, I implemented cus-
tomized mass loss routines for each wind scheme employed in the run star extras.f (see
§A.2.1–A.2.12). The formulae implemented for each wind algorithm are the ones provided
in §1.4, but the errors (when available) are neglected14.

When possible (i.e. for the de Jager et al., Nieuwenhuijzen et al., van Loon et al., Nugis &
Lamers, and Kudritzki et al. algorithms) the custom mass loss routine calls MESA wind rou-
tines, which are copied in the run star extras.f from $MESA DIR/star/private/winds.f.
To be able to use the built-in routine for the Kudritzki et al. wind scheme, the MESA module
kuma.mod is copied from into $MESA DIR/star/make to $MESA DIR/include.

14This is common in stellar astrophysics applications of these formulae. The sensitivity to each coefficient
in the formulae could, in principle, be studied by measuring the rate of divergence between the evolutionary
tracks computed varying one coefficient within its error.
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The Vink et al. algorithm also has a built-in routine in MESA, but it uses a linear inter-
polation between the formula for above the bistability jump (Eq.1.47) and below (Eq. 1.48).
This approach gives a very steep, unphysical jump between the two regimes (thus, M(t) /∈
C2). As an improvement, I implemented a hyperbolic tangent interpolation, which yields a
smoother jump, see Fig. 2.7.

To study the effects of the possible overestimate of the mass loss rate caused, for example,
by wind inhomogeneities (the “clumps”), I use three different values of the wind efficiencies
η = 1.0, 0.33, 0.1 . I use the same η during the entire evolution of each model, even if the
wind scheme routines implemented permit the use of a different efficiency factor for each
phase. The values of η ≡

√
fcl (see §1.4.1) are those suggested in [7], and they span the

range of clumping factors fcl available in the literature.

2.3 Systematic Comparison of Wind Mass Loss Algorithms

To explore the effects on the stellar structure of different parametrizations and efficiencies of
the wind mass loss, I ran a grid of solar chemical composition (Z� ≡ 0.019 [25, 64], Y� = 0.27
[39]) stellar models with MZAMS = {15, 20, 25, 30}M�. The mass range explored is limited
by the effects of the MLT++ (see §2.1.3), which are found to cause rapid and unphysical
oscillation of the surface L, Teff and R, that influence the mass loss rate and invalidate the
comparison between different mass loss algorithms (see also §B.2). Such oscillations are
found in all models needing the MLT++ workaround (MZAMS ≥ 20M�) when using the de-
fault outer boundary condition. The default atmospheric boundary condition, simple atm,
estimates the location of the photosphere (defined by τ = 2/3), and its location is not ac-
curate enough for the purposes of this study (see §B.2). It causes significant variations of
the surface location between subsequent steps, that produce large and unphysical varia-
tions of the luminosity, effective temperature and radius of the star, causing variations in
the mass loss rate. To reduce these oscillations of the surface properties, and eliminate them
for MZAMS ≤ 30M�, I adopted an Eddington grey atmospheric model to evaluate the outer
boundary pressure. This is done by setting which atm option = Eddington grey in the pa-
rameter file (inlist, see §A.1.1). The Eddington grey atmospheric model assumes for the
outer portion of the star

T4 =
3
4

T4
eff(τ +

2
3
) , (2.20)

and integrates the stellar structure equations from the outermost cell to the photosphere,
using τ as the independent variable, to find the photospheric boundary pressure.

For each initial mass, I computed simulations with each wind mass loss combination
listed in Tab. 2.1, and for each wind mass loss combination I used three different efficiency
factors η = 1.0, 0.33, 1.0. Since the efficiency factor η does not have a physical interpretation
based on first principles, these values are chosen (arbitrarily) to test the suggestions of [7, 49].
According to [7, 49], wind mass loss rates are overestimated by a factor between 2 and 10,
with 3 as the best guess for the overestimation factor.

The simulations are run from ZAMS15 to core oxygen depletion, defined by

Xc(
16O) ≤ 0.4 , (2.21)

15However, the initial composition is slightly different from the composition of the built-in starting models.
Therefore a short phase of readjustment occurs at the beginning of each run. This phase can be seen as a small
loop in the low-luminosity, high-temperature corner of the HR diagrams.
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[19]. However, since the condition Eq. 2.21 is already true at the beginning of the calculation,
I check it only when a small amount of 28Si is produced in the core (i.e. when some oxygen
has been burned, Xc(28Si) ≥ 0.01). Note that 16O and 28Si are the only isotopes of oxygen
and silicon included in the 21-isotope nuclear network used (approx21.net), since its pur-
pose is not to follow the details of the nucleosynthetic processes. The stopping criterion is
implemented in the run star extras.f, see §A.2.13.

After oxygen depletion, wind mass loss can be neglected16 because the evolution is so
rapid that there is not enough time for it to remove a significant fraction of the mass. More-
over, post-oxygen depletion evolution cannot be simulated realistically with a 21-isotope
nuclear network (see §B.3). Finally, to improve numerical stability, MESA artificially pro-
gressively decreases the mass loss rate when the central temperature Tc ≥ 109 K, until it is
completely turned off for Tc ≥ 2× 109 K. This does not modify significantly the amount
of mass shed, since the physical time spent at Tc ≥ 109 K before oxygen depletion is also
extremely short. I ran some test case without the artificial decrease of Ṁ and until the onset
of core collapse to confirm that the final mass of the star does not change after the condition
Eq. 2.21 is reached. Note that the post-oxygen depletion evolution of the star may amplify
minor features in the core structures caused by mass loss in early stages, [19].

To restart the stellar simulations with a guaranteed bit-to-bit identical evolution from
oxygen depletion, I saved binary files (MESA “photos”) at the end of each run. To do this, I
copy the module model out.mod in $MESA DIR/include.

I use the Ledoux criterion for convection, i.e. I consider as convectively unstable regions
where

∇loc ≥ ∇ad −
ϕ

δ
∇µ , (2.22)

where ∇µ
def
= d log(µ)/d log(P), and ϕ and δ are positive constants depending on the EOS,

see [21]. This criterion considers the effect of the chemical stratification on the convective
stability of a region. I follow the suggestions of [19] for treating convective mixing and over-
shooting, but I also include thermohaline mixing (i.e. slow mixing on the thermal timescale
in regions with a mean molecular weight inversion) using the default MESA option. This
corresponds to the following values of the mixing length parameter αmlt, the exponentially
decreasing overshooting parameter fov (see Eq. 2 in [81]), semiconvection efficiency, and
thermohaline coefficient:

• αmlt = 2.0;

• fov = 0.025 (for all the overshooting and undershooting regions);

• semiconvection with efficiency 0.01;

• thermohaline according to [88] with coefficient 2.

I carried out extensive work on the optimum choice of the spatial and temporal resolu-
tion for this study. I used two test-case models of MZAMS = 15M� and MZAMS = 25M�
with the Vink et al., de Jager et al. wind combination and η = 1.0, to test the conver-
gence of both models with and without MLT++. Each test case was run twice, once with
mesh delta coeff = mesh delta coeff for highT = 1.0, and once with mesh delta coeff

= mesh delta coeff for highT ≤ 0.2 .

16Other groups stop their calculations even earlier, at carbon depletion [45].
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Custom Ṁ and ∆tn
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Figure 2.8: Relative mass difference for the test case models as a function of time. The
upper (lower) panel is for the test case model with MZAMS = 15M�(25M�), respec-

tively. ∆M def
= Mstd − Mh is the difference between the total mass at standard resolution

(mesh delta coeff=1.0) and the total mass at five times higher resolution. The mass loss
scheme used for these test cases is the combination of the Vink et al. rate and de Jager et al.
rate with η = 1.0. The implementation of the custom version of the former rate is described
in §2.2.2. The implementation of the custom timestep control is described in §2.2.1. The
“local mesh refinement” is described in §2.3 and §A.2. Note the different scales on the two
panels: the relative mass difference is higher at higher MZAMS.

Preliminary tests showed that the use of higher spatial resolution (i.e. lower value of
mesh delta coeff, see §2.1) yielded significantly different results for the total mass at oxy-
gen depletion MO depl and the structure of the star. To make sure the customized routine
used were not causing this problem, I re-ran the test cases using the default timestep control,
first without mass loss, then using the default mass loss (“Dutch” wind scheme, similar to
VdJNL except for the implementation of the Vink et al. rate), and then progressively turned
on the customized routines for the timestep control and the mass loss algorithm.

Using the customized timestep control (see §2.2.1), and the hyperbolic tangent interpo-
lation of the Vink et al. mass loss rate (see §2.2.2) slightly improved the convergence, see
Fig. 2.8. However, the level of convergence reached using only the customized routine was
not sufficient, especially for the MZAMS = 25M� test case, where differences greater than
∼ 7% were still found in the final mass, see Fig. 2.8.

Further investigations showed that “local mesh refinements” (see below) can decrease the
discrepancies and resolve the convergence issue, at least for the surface variables which en-
ter in the determination of the mass loss rate. However, significant quantitative differences
are still present in the late Tc ≡ Tc(ρc) tracks of the test case models (see §B.3.3). Such differ-
ences are not worrying for the present purposes, since they arise at Tc ≥ 109 K (i.e. when the
artificial mass loss decrease is started) and they occur in an evolutionary phase too rapid to
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have effects at the stellar surface. Note that a proper simulation of the oxygen burning stage
requires ∼ 40 isotopes in the nuclear network (Arnett, private communication), therefore
it is possible that the differences resulting from changing the resolution would disappear
with a more physically consistent treatment of the core nuclear burning. The “local mesh
refinement” (see §A.1.1) adopted increases the resolution in the following regions:

• Stellar surface: I constrain the variation of log10(T) at the surface by setting
T function2 weight = 110 (instead of the default value 0) in the inlist. This makes
the outermost computational cell of the star small independent of the value of
mesh delta coeff, ensuring that Xs is the same both in the high resolution and nor-
mal resolution runs, and that the switch to the WR wind algorithm does not depend
on resolution, see §A.1.1;
• Edges of burning regions: To increase the resolution at the boundaries of regions

where nuclear burning occurs, I constrain the spatial variation of d log(εnuc)/d log(P)
by setting a multiplying factor to 0.15 (instead of the default value of 1) for the max-
imum change allowed for d log(εnuc)/d log(P) for each nuclear burning chain (PP,
CNO, 3α, C burning, etc...), see §A.1.1;
• Edge of cores of different composition: I reduce the maximum spatial variation al-

lowed for the abundances of several isotopes (1H, 4He, 12C, 16O, 20Ne, 28Si, 32S, 54Fe,
56Fe). This ensures that I properly resolve the edges of the helium and carbon/oxygen
cores. Specifically, I add the quantity 20× log10(Xi + 0.01) to those determining the
merging or splitting of cells, see §A.1.1.

2.4 Simplified Simulation of Envelope Shedding Mass Loss Events

Motivated by the fundamental uncertainties in how mass loss proceeds for SN progenitors
(discussed in §1.4.9), I used MESA to produce stellar models that have undergone mass loss
that mimics the rapid processes mentioned in §1.4.9, such as violent pulsational instabili-
ties, wave driven mass loss, RLOF in binaries, or any impulsive and catastrophic mass loss
event. By impulsive event, I indicate any event that happens on a timescale shorter than
the thermal timescale and/or the dynamical timescale, which therefore must happen out of
thermal and hydrostatic equilibrium. The aim of this numerical experiment is to bypass
the uncertainties in the mass loss process by artificially removing (part of) the hydrogen-rich
envelope, and explore how impulsive mass loss influences the post-stripping evolution and
the structure at the onset of core collapse, see Eq. 1.9. The simulated light curves produced
by the explosion of the models described here are presented in Morozova et al., submitted
to ApJ, arXiv:1505.06746.

To produce pre-SN models with varying levels of mass stripping, I first computed a refer-
ence model with a zero-age main sequence (ZAMS) mass MZAMS = 15M� and solar metal-
licity Z� = 0.019 [25, 64]. This MZAMS rules out all LBV-like phenomena, since LBVs should
be much more massive [78]. This choice also allows me to avoid the problem of nearly
super-Eddington radiation dominated convective envelopes (see §1.3.1 and §2.1.3).

In the reference model, as in all the stripped models, convection is treated as described
in §2.3, except thermohaline mixing which is omitted. This does not influence significantly
the results.

Besides the mass stripping, all models used a wind mass loss algorithm that combines
the prescriptions of Vink et al. (for the hot phase), implemented according to §2.2.2, de Jager

54



CHAPTER 2. METHODS

et al. (for the cool phase), and Nugis & Lamers (for the WR phase), with efficiency η = 1.0.
The reference model, and all stripped models, are computed using the default 21-isotope
nuclear reaction network approx21.net until the onset of core collapse. The velocity of each
computational cell was traced only near the onset of core collapse, i.e. from when Ye ≤ 0.45
in the center.

The temporal resolution was set using varcontrol target = 10−3 (which is the MESA
default value for massive stars), and I used the customized timestep control described in
§2.2.1. The spatial resolution was set by mesh delta coeff = 1.0 and mesh delta coeff

for highT = 1.5, which are the default values for massive stars, since the details of the core
structure are not the main focus of this study.

The reason for using a coarser resolution at high temperature (i.e., in the core), was to
reduce the run-time and obtain a solution to the stellar structure equations more easily. Even
if this reduces the accuracy of the core structures, the 21-isotope nuclear reaction network
cannot properly follow the late nuclear burning stages (neon, oxygen and silicon burning),
see §B.3. In particular, this small network cannot properly account for the neutronization
of matter. In approx21.net the neutronization treated approximately with a compound
electron-capture reaction,

56Fe + 2e− →56 Cr + 2νe , (2.23)

which is tuned to yield Ye(r = 0) ≡ Ye(56Cr) = 0.428 in the center at the onset of core col-
lapse. The choice of a single compound reaction to simulate neutronization is arbitrary, and
the final Ye obtained can differ of a few percent from the value obtained from calculations
that use hundreds of active isotopes. This has a significant effect on the core structure, be-
cause Ye enters quadratically in the effective Chandrasekhar mass, Eq. 1.7. However, since
the explosion mechanism of SNe is still uncertain, see §1.2.4, most of the simulations deal-
ing with light curves artificially inject energy (thermal bomb) or momentum (piston) in the
stellar core to trigger the explosion (e.g. [13, 17] and references therein). For this, only the
accuracy of the outer portion of the star is important, and the details of the core structure
are irrelevant.

Fig. 2.9 shows the complete evolutionary track of the unstripped reference model on the
HR diagram. At each of the marked points, I remove parts of the star’s envelope (see §2.4.1).

The star in Fig. 2.9 expands significantly during the red supergiant (RSG) phase. This
expansion could trigger a possibly unstable RLOF event, were the star in a binary system,
that quickly removes all or part of the hydrogen-rich envelope. Note, however, that these
are non-rotating stellar models, and that any angular momentum loss and/or transfer that
might happen in a RLOF event is completely neglected here. I stripped the star at three
different times during the RSG phase to investigate whether the post-stripping evolution
and the structure at the onset of core collapse are sensitive to when the mass loss occurs.

The physical conditions that define the moments when I stripped the star are summarized
in Tab. 2.3 and are as follows:

• The red circle at Teff ≡ 104 K corresponds to the middle of the subgiant branch (SGB).
The models stripped here comprise the “mSGB” series.

• The yellow triangle marks the first moment when the stellar radius R exceeds half of its
maximum value, i.e., R & 375 R� (“hMR” series).

• The cyan diamond shows when the convective envelope stops its expansion and reaches
its maximum extent (“MCE” series).
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Figure 2.9: Evolutionary track on the HR diagram for the unstripped model used as refer-
ence for the comparison with the stripped models. Each marked point corresponds to one
stripped series: the red dot corresponds to Teff = 104 K (middle of SGB – mSGB), the yellow
triangle to where the star reaches half of its maximum radius (hMR), and the cyan diamond
to when the outer convective envelope stops expanding (MCE). The reference model is re-
run from ZAMS to reach each point.

Table 2.3: Series of stripped models. The radius (R), age and helium core mass (MHe) at each
stripping point are reported. Xc is the abundance of hydrogen in the central computational
cell; vsurf

conv is the unweighted average convective velocity in the outermost 150 computational
cells, venv

conv is the unweighted average convective velocity in the 150 computational cells
above the outermost lower boundary of a convective region. If these two differ by less than
10%, the envelope has roughly reached its maximum extent. Note that the radius at TAMS
(age ∼ 12.93 Myr) is only ∼ 1.2 R�.

Series Name Stripping Moment Age [Myr] R [R�] MHe [M�]

mSGB Teff = 104 K 13.02 79.8 3.81

hMR R & 375 R� 13.03 381.6 3.87

MCE Xc = 0 and (vsurf
conv − venv

conv)/vsurf
conv ≤ 0.1 13.03 638.1 3.88

The time difference between these evolutionary points is only ∼ 104 years, which is
small compared to the lifetime of the unstripped reference model, 1.413× 107 years. How-
ever, it is large compared to the Kelvin-Helmholtz timescale (tKH ∼ 1250 years at mSGB,
tKH ' 424 years at hMR, and tKH ' 124 years at MCE), and of course much larger than the
global dynamic timescale (i.e. the free fall time). Therefore, the nuclear burning stage is the
same for all the marked points17: the star is burning hydrogen in a shell, and has an almost

17In the paradigm of RLOF, these events would all correspond to a “case B” (i.e. post-main-sequence) mass
transfer.
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completely inert helium core. A tiny helium burning region exists in the center at hMR and
MCE, but its energy generation rate is negligible.

The structure of the outermost envelope and the radius of the unstripped reference model
(see Tab. 2.3) change much faster and are significantly different at the three stripping points.
The structure, and, in particular, the temperature gradient in the outer region of the star,
determine the star’s response to the mass loss event.

At mSGB most of the outer envelope is still radiative, and only a small region at the base
of the envelope, between mass coordinate 6.5 . m/M� . 5.5, is convective. Therefore,
the mSGB series is a prototype of mass stripping event happening when the envelope is
(mostly) radiative.

At hMR, a shallow convective zone has formed in the outer envelope, which extends
from the surface down to m ∼ 9.5M�, i.e. roughly in the outermost 5M�. The deeper
convective layer that existed at mSGB is now stable and radiative. Thus, models of the
hMR series explore the response to violent mass loss of an envelope that is only partially
convective. Since the stopping criterion directly involves the radius of the star, it mimics
more naturally the condition for a RLOF event. However, feedback on the Roche Lobe
radius and the parameters of the binary are ignored, and the amount of mass removed is
specified by hand. It is also questionable whether in a RLOF mass can be lost as fast as I
imposed on these models.

Finally, by definition, at MCE the convective portion of the envelope has reached its max-
imum extent of ∼ 8M�, occupying the region from m ' 6M� to the surface. At this point,
the temperature gradient in the outermost region is roughly adiabatic. Stars with adiabatic
temperature gradients in their outer envelopes respond to mass loss by expanding, because
of the reduction in the pressure at the outer boundary. In the RLOF paradigm, this leads to
dynamically unstable mass loss, that removes the entire hydrogen envelope. The models in
the MCE series are prototypes of impulsive mass loss events happening from a convective
envelope.

2.4.1 The Stripping Process

To instantaneously remove mass from the reference model and mimic a fast and short mass
loss event (such as an eruption, or unstable RLOF in a binary), I used the MESA module
adjust mass, by setting relax initial mass = .true. in the parameter file (inlist, see
§A.1.2) for each run, and specified the new value of the desired total mass.

The new (smaller) value of the total mass is reached using 80 “pseudo-evolution” steps
(i.e. the structure is evolved using timesteps, but the time coordinate is not updated and
remains constant). During each step, MESA removes the largest amount of mass from the
envelope that it can while still finding a hydrostatic solution to the equations of stellar struc-
ture. In most cases, of the 80 pseudo-evolution steps used, 75 are sufficient to reach the de-
sired mass, and the last 5 pseudo-evolution steps have mass loss set to zero. Both during and
at the end of the pseudo-evolution, the structure is always in global hydrostatic equilibrium,
therefore, when the regular evolution resumes, no readjustment phase occurs.

At each of the points indicated in Fig. 2.9, I produce a series of stripped models. In each
series, I remove mass in steps of 1M� per model, until only a thin (radiative) layer remains
above the hydrogen shell. The amount of mass to remove from each model was chosen
arbitrarily: each 1M� step removes a significant fraction of the total mass of the reference
model, but it permits to remove only partially the envelope and explore how the structure
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changes with varying stripping levels. The precise value of the mass of the thin layer left
above the hydrogen burning shell depends on the stripping point considered, and it always
falls in the 1M� ballpark. If such layer were also removed, the hypothesis of hydrostatic
equilibrium (embedded in the MESA code) would break down. To show this, consider the
hydrostatic equilibrium condition (cf. Eq. 2.4 with ak = 0)

dP
dr

= −GM(r)ρ(r)
r2 ≡ g(r) , (2.24)

which must hold at any location r in the star. For the location of the edge of the hydro-
gen burning shell (however it may be defined) r = rsh, during the stripping process, the
gravitational acceleration (per unit volume),

gsh
def
= −GM(rsh)ρ(rsh)

rsh
, (2.25)

is (roughly) constant, since none of the quantities on the right-hand side is allowed to vary
significantly (in nature, the event simulated happens on a timescale much shorter than the
thermal timescale). Therefore, to maintain hydrostatic equilibrium, the pressure gradient
must not change significantly at this location. The pressure gradient at the shell boundary
can be approximated by

dP
dr

∣∣∣∣
sh
∼ Psh − Pout

Rsh − Rout
< 0 . (2.26)

If a significant amount of mass is left outside the shell, Rout � Rsh and Pout � Psh (the total
pressure decreases outward), thus,

dP
dr

∣∣∣∣
sh
∼ − Psh

Rout
, (2.27)

and both quantities on the right-hand side do not vary much during the stripping process
(see also §4.2 and Tab. 4.1). On the other hand, if all the mass outside the hydrogen burning
shell is removed or very little is left, then Rout ∼ Rsh, while the pressures cannot vary much
(they would on a thermal timescale, but the simulated event happens faster), therefore the
pressure gradient at the shell boundaries increases, while the gravitational pull remains
roughly constant. This is contrary to the hydrostatic equilibrium hypothesis, which cannot
hold anymore: any result MESA would produce when all the mass outside the hydrogen
shell is removed cannot be physically meaningful (see also §B.1).

Note that during the stripping process the energy generation in the star is not determined
by the energy loss at the surface as would happen during the regular stellar evolution, but
rather is almost constant18 and the outer layer must readjust to the energy generation rate.

The maximum amount of mass I was able to remove is limited by the global hydrostatic
equilibrium condition. The amount of mass removed is indicated (in units of M�) by the
number in the model name in Table (4.3).

Once the mass is removed, each stripped star is then evolved to core collapse as described
above. Note, that a model is not stripped more than once during its evolution. That is, each
series of stripped models is produced by evolving the star from the ZAMS to the desired
stripping point before any mass is stripped.

18Small variations are allowed to find a solution during the pseudo-evolution.
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The procedure described above does not provide insight into the physical mechanism(s)
triggering and powering the envelope (partial) shedding event. The conditions for its onset
are chosen with a certain degree of arbitrariness, and the likelihood of such extreme mass
loss events during these evolutionary stages may be questionable. These models are thus an
attempt to study the response to an impulsive mass loss event, while still satisfying the very
restrictive condition of global hydrostatic equilibrium. In principle, since this restriction
does not exist in nature, this could result in a discrepancy between the actual and the simu-
lated post-episodic mass loss structure and evolution. Therefore, this simple mass stripping
procedure may be affected by a large systematic error resulting from the choice of timing for
the stripping and the assumption of global hydrostatic equilibrium.
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CHAPTER 3

Results: Wind Algorithms Comparison

Le vent l’ emportera
Tout disparaı̂tra, mais

Le vent nous portera
[Noir Désir, “Le Vent Nous Portera”, Element of Crime]

3.1 Overview

In this chapter, I present the grid of models computed to compare and contrast the different
wind mass loss algorithms available in the literature and commonly adopted for the simu-
lation of massive star evolution. The aim of this study is not to determine which algorithm
is in some sense “the best”, but rather to quantify and describe the differences in the stellar
structure and evolution rising from different algorithmic treatments of the same physical
phenomenon: the steady, radiatively driven driven wind mass loss (see also §1.4.1).

Figures 3.1 and 3.2 show the total mass as a function of time for MZAMS={15, 20} M�
and MZAMS ={25, 30} M�, respectively. Note that the scale of each plot is different. The
spread in the final masses increases for higher initial masses, resulting directly in a larger
uncertainty in the mass loss and final mass of these stars. Another striking feature is the
large spread in the masses and mass loss rates during the (post-TAMS) giant and supergiant
phases, i.e. precisely when the mass loss rate is the highest and most of the mass is lost. The
maximum difference between the final masses could be used to define systematic uncertain-
ties for the final mass inferred from the simulation of massive stars. These are very large (up
to ∼ 50% of MZAMS), confirming that mass loss is (one of) the most important sources of
uncertainty in the evolution of massive stars. This uncertainty as been heretofore explored
only insufficiently, see e.g. [45, 46].

61



CHAPTER 3. RESULTS: WIND ALGORITHMS COMPARISON

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

t [Myr]

6

7

8

9

10

11

12

13

14

15

M
[M
�

]

TA
M

S

MZAMS = 15M�

Vink et al., de Jager et al.
Kudritzki et al., Nieuwenhuijzen et al.
Kudritzki et al., de Jager et al.
Vink et al., Nieuwenhuijzen et al.
Kudritzki et al., van Loon et al.
Vink et al., van Loon et al.
η = 1.0
η = 0.33
η = 0.1

0 1 2 3 4 5 6 7 8 9 10

t [Myr]

8
9

10
11
12
13
14
15
16
17
18
19
20

M
[M
�

]

TA
M

S

MZAMS = 20M�

Vink et al., de Jager et al.
Kudritzki et al., Nieuwenhuijzen et al.
Kudritzki et al., de Jager et al.
Vink et al., Nieuwenhuijzen et al.
Kudritzki et al., van Loon et al.
Vink et al., van Loon et al.
η = 1.0
η = 0.33
η = 0.1

Figure 3.1: Total mass as a function of time. Each color corresponds to a given wind scheme.
Simulations of stars that do not reach Xs ≤ 0.4 during their evolution and differing only in
the WR wind scheme are not shown. Dashed curves correspond to η = 0.33, and dotted
curves correspond to η = 0.1, regardless of the color. The dot dashed vertical line indicates
roughly the TAMS. The top panel is for MZAMS = 15M�, and the bottom panel for MZAMS =
20M�. Note the difference in vertical scale between the panels.
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Figure 3.2: Total mass as a function of time. Each color corresponds to a given wind scheme.
Simulations of stars that do not reach Xs ≤ 0.4 during their evolution and differing only in
the WR wind scheme are not shown. Models reaching the WR stage are those using the rates
from Kudritzki et al. combined with de Jager et al. or Nieuwenhuijzen et al., with η = 1.0.
Dashed curves correspond to η = 0.33, and dotted curves correspond to η = 0.1, regardless
of the color. The dot dashed vertical line indicates roughly the TAMS. The top panel is for
MZAMS = 25M�, and the bottom panel for MZAMS = 30M�. Note the difference in vertical
scale between the panels.
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Figure 3.3 shows the relative final mass (at oxygen depletion, X16O ≤ 0.4, [19]) as a func-
tion of the initial mass. It illustrates the large spread found varying the efficiency and/or the
wind algorithm. Note that the effect of varying η are larger than varying the mass loss algo-
rithm: points indicated by markers of the same shape (corresponding to the same η) cluster
together. This theoretical uncertainty prevents the reconstruction of MZAMS from the (ob-
served) final masses. Note that the spread is larger for MZAMS = 15M�, at that it decreases
increasing MZAMS. This is because all wind mass loss algorithm prescribe a high mass loss
rate for more massive (and thus more luminous) stars, while for lower mass stars only al-
gorithms using the van Loon et al. rate (for the cool phase of evolution) yield a significantly
lower final mass. Note also that the decrease of the spread increasing MZAMS does not tend
to converge toward a single final value for MO depl/MZAMS, but rather it tends to a large
band. This could be an indication of an irreducible theoretical uncertainty. It is possible that
each single mass loss algorithm captures (in a simplified way) some, but not all, the crucial
aspects of the radiatively driven mass loss processes. Therefore, it is possible to get an idea
of the uncertainty deriving from the modeling assumptions by running models with the
same initial conditions (MZAMS, Z, rotation, etc.) with all the available algorithms. Similar
plots for other evolutionary stages (e.g. at carbon ignition instead of at oxygen depletion)
are not shown since they do not show different features.
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Figure 3.3: Relative final mass as a function of MZAMS. Diamonds, squares and circles cor-
respond to η = 1.0, η = 0.33, and η = 0.1, respectively. Note that many points overlap.

Table 3.2 summarizes the properties of the computed models at oxygen depletion. The
compactness parameter ξ

O depl
M [89] is defined by

ξ
O depl
M ≡ ξM(tO depl), ξM(t) def

=
M/M�

R(M)/1000km
, (3.1)

where I setM = 2.5M�. This is roughly the mass threshold separating the most massive
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NSs from the least massive stellar BHs [16, 19, 89]. Note that ξM is necessarily a function
of time, as the stellar core contracts during the evolution, increasing its temperature and
density, and to sustain the star through the nuclear processing of heavier nuclei (see also
Fig. 3.8).

To avoid introducing more arbitrary thresholds, I define the edge of the helium and
carbon-oxygen cores as follows:

H core def
= max

(
dX
dm

)
, (3.2)

CO core def
= max

[
max

(
dY
dm

)
,
(

dX12C
dm

)]
. (3.3)

Equation 3.2 sets the helium core boundary to the location (going inward) where the hy-
drogen abundance as a function of the mass coordinate X(m) is the steepest, and can be
generalized for any other core. The reason for defining a carbon-oxygen core, instead of two
separated carbon-rich and oxygen-rich cores, is that the separation between the two is not
always clear, and the abundances of carbon and oxygen at the boundaries depends on the
details of the nuclear burning process. This is also explains the definitions in Eq. 3.2 and
Eq. 3.3 : it is difficult to find a threshold for the abundance of some isotopes that can de-
fine clear boundaries of the cores for any MZAMS. I find a good agreement between the core
masses obtained with Eq. 3.2 and Eq. 3.3, and the usual boundary definitions (e.g. innermost
location where X ≤ 0.01 and Y ≤ 0.01 for the He core and CO core, respectively), unless
the latter yield a zero mass core, because the threshold value is not reached anywhere. Note
that the only carbon isotope included in the nuclear reaction network (approx21.net) is 12C,
since its purpose is not to follow the details of the nucleosynthesis , but just to provide εnuc
(although, see the discussion in §B.3.2).

The rows of Tab. 3.2 give triplets of values for some stellar parameters for each wind
algorithm varying the efficiency η, while the columns show the same stellar parameters
for a given efficiency η varying the mass loss algorithm. The wind schemes are labeled
according to Tab. 2.1, and their scalings with the physical quantities determining the mass
loss rate are reported in Tab. 2.2.

As Fig. 3.1, Fig. 3.2, Fig. 3.3 and Tab. 3.2 show, η has a larger effect on the resulting stellar
structure than the choice of mass loss algorithm. However, the structure at oxygen depletion
is not uniquely determined by the parameters shown. Some evolutionary behaviors appear
depending on the wind scheme (see also Fig. 3.4–3.7).

Although, in principle, the wind schemes compared are just different algorithmic repre-
sentations of the same physical phenomenon, they are not equivalent to each other, neither
from the theoretical point of view (because of the different choices of physical parameters to
express Ṁ, see §1.4 and Tab. 2.2), nor from the modelling point of view (because they yield
significantly different evolutionary tracks and final structures).

It is hard to find clear trends in Tab. 3.2 – except maybe the extremely large mass loss rate
resulting from the Van Loon et al. algorithm (§1.4.4, wind schemes containing “vL” in the
name), compared to the other cool phase algorithms (i.e. de Jager et al. and Nieuwenhuijzen
et al.) for MZAMS ≤ 25M�, see §3.3.

Not all the 144 (=4MZAMS × 2 hot wind schemes ×3 cool wind schemes ×2 WR wind
schemes ×3 values of η) models in this grid are truly different. Models differing only in
the WR wind scheme, and that do not reach the condition to switch to it, i.e. Xs < 0.4,
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are effectively identical (e.g. s15VdJNL 1.0 and s15VdJH 1.0). This redundancy reduces the
number of non-identical models in the grid to 76. Of these, 30 end their evolution1 as RSG
with log10(Teff/[K]) ≤ 3.6; 38 end as YSG with log10(Teff/[K]) ≤ 3.8; eight end as WR with
Xs < 0.4, and none reach oxygen depletion as BSG (i.e. with log10(Teff/[K]) > 3.8), see
Tab. 3.1. The temperature threshold to define BSG, RSG and YSG are somewhat arbitrary,
and come from [47]. Since most of the RSG in this grid are “hot-RSG”, see Fig. 3.4–Fig. 3.7,
the RSG-to-YSG ratio is very sensitive to the value chosen for the corresponding threshold.
For example, assuming log10(Teff/[K]) ≤ 3.68 to separate RSG from YSG, the number of
RSG increases to 54, and only 14 YSG are left.

Table 3.1: Final state of all the computed models. Red Super-Giants (RSG) correspond to
log10(Teff/[K]) ≤ 3.6, Yellow Super-Giants (YSG) correspond to 3.6 ≤ log10(Teff/[K]) ≤ 3.8
[47], no Blue-Supergiant (BSG) are found in this grid. WR stars have Xs ≤ 0.4, regardless of
their surface temperature. The first column indicates the mass loss algorithm combination
used, see Tab. 2.1 and Tab. 2.2 for details. Note the redundancy between lines differing only
in the WR wind scheme.

MZAMS [M�] 15 20 25 30
Wind Scheme η = 0.1 0.33 1.0 0.1 0.33 1.0 0.1 0.33 1.0 0.1 0.33 1.0

VdJNL RSG RSG RSG RSG RSG YSG YSG YSG YSG YSG YSG YSG
VdJH RSG RSG RSG RSG RSG YSG YSG YSG YSG YSG YSG YSG
VNJNL RSG RSG RSG RSG RSG YSG YSG YSG YSG YSG YSG YSG
VNJH RSG RSG RSG RSG RSG YSG YSG YSG YSG YSG YSG YSG
VvLNL RSG RSG YSG RSG RSG YSG YSG YSG YSG YSG YSG YSG
VvLH RSG RSG YSG RSG RSG YSG YSG YSG YSG YSG YSG YSG
KdJNL RSG RSG RSG RSG RSG RSG YSG YSG WR YSG YSG WR
KdJH RSG RSG RSG RSG RSG RSG YSG YSG WR YSG YSG WR
KNJH RSG RSG RSG RSG RSG RSG YSG YSG WR YSG YSG WR
KNJNL RSG RSG RSG RSG RSG RSG YSG YSG WR YSG YSG WR
KvLNL RSG RSG YSG RSG RSG YSG YSG YSG YSG YSG YSG YSG
KvLH RSG RSG YSG RSG RSG YSG YSG YSG YSG YSG YSG YSG

The lack of BSG is not completely surprising, considering the maximum MZAMS = 30M�
used is not very high, and standard stellar evolution theory predicts for stars with 15M� .
MZAMS . 30M� a RSG pre-SN stage (see also §1.2.3 and, e.g., [29]).

The only simulations reaching the threshold (Xs ≤ 0.4, see §2.2.2) for switching to the WR
wind scheme are for MZAMS = {25, 30} M� using the Kudritzki et al. rate (during the hot
phase) and de Jager et al. or Nieuwenhuijzen et al. rate (during the cool phase), with η = 1.0.

The small number of WR stars produced in this grid has several (degenerate) explana-
tions:

• The maximum MZAMS used (see §2.3) is only 30M�, and the progenitors of WR stars
may be more massive on the ZAMS. Both observations and numerical simulations
carried out with standard assumptions infer MZAMS & 25–30 M� as the typical lower
boundary for the initial mass of a single star capable of losing its entire hydrogen
envelope and becoming a WR, see e.g. [5, 30, 90, 91].
• The choices of the description of convection (i.e. using the Ledoux criterion, the param-

eters chosen for the mixing length and overshooting, the description of semiconvec-
1The simulations are stopped at oxygen depletion Xc(16O) ≤ 0.4, however, the subsequent evolution is so

fast that it cannot change significantly the surface properties of the stars.
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tion and thermohaline mixing), that enter the determination of the core dimensions,
the luminosity and thus the mass loss rate. They also determine the mixing of heavier
elements into the outer layers, which is necessary to reduce the surface abundance of
hydrogen below the adopted threshold. Note that the influence of these parameters on
the production of WR stars could be tested with efficient stellar evolution codes such
as MESA. Rapid rotation, neglected in this work, may play a role both in the mixing
and mass loss processes, see e.g. [92, 93] and references therein.

• The treatment of nearly super-Eddington radiation dominated envelopes (see §1.3.1,
§2.1.3 and [39]). Simulations carried out with other codes (e.g. FRANEC, Limongi,
private comunication) remove all the mass outside the location where L = LEdd or
(e.g. the Geneva code, [94]) impose an arbitrary, extreme and constant mass loss rate
Ṁ ∼ 10−4 − 10−3M� yr−1 in the region of the HR diagram corresponding to LBVs,
thus more easily producing WR stars. These, however, cannot be realistic approaches,
since the local “modified” Eddington luminosity can be exceeded in stellar interiors
(cf. §1.3.1), and since the LBVs are (by definition) variable stars, and they experience
both extreme mass outburst (at constant bolometric L, [95]) and quiescent phases.

• It is possible that binarity has the dominant role in stripping the hydrogen envelope
(e.g. [96]) and producing WR stars. In this scenario, the lack of WR stars in the grid
presented here would be expected.

The differences between the two WR mass loss algorithms compared in this work (Hamann
et al. – §1.4.8, and Nugis & Lamers – §1.4.7) are discussed in §3.4.

Figures 3.4–3.7 show the evolutionary tracks on the HR diagrams of all computed models,
allowing a quick eyeball comparison of the results.
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Table 3.2: Radius (RO depl), total mass (MO depl), He core mass (MHe) and CO core mass
(MCO) in solar units, and compactness parameter at oxygen depletion for each MZAMS and
efficiency η used. Models that do not reach the threshold to switch to the WR wind al-
gorithm (Xs ≤ 0.4) during their evolution and differing only in the WR wind scheme are
not listed. The values referring to WR stars are highlighted and in red bold font. The first
column indicates the mass loss algorithm combination used, see Tab. 2.1 and Tab. 2.2 for
details.

MZAMS = 15 M�
Wind Scheme R [R�] MO depl [M�] MHe [M�] MCO [M�] ξ

O depl
2.5

η = 0.1 0.33 1.0 0.1 0.33 1.0 0.1 0.33 1.0 0.1 0.33 1.0 0.1 0.33 1.0

VdJNL 924 928 946 14.68 14.02 13.34 5.15 5.07 5.01 3.32 3.26 3.25 0.146 0.156 0.147
VNJNL 933 933 951 14.66 13.98 13.25 5.15 5.07 5.01 3.32 3.26 3.21 0.130 0.137 0.165
VvLNL 947 986 673 13.69 10.81 5.70 5.15 5.06 4.84 3.29 3.21 3.04 0.150 0.168 0.115
KdJNL 933 944 940 14.68 13.97 12.60 5.17 5.16 4.95 3.29 3.31 3.12 0.164 0.123 0.168
KNJNL 928 939 942 14.67 13.93 12.49 5.17 5.16 4.95 3.29 3.29 3.15 0.126 0.156 0.166
KvLNL 951 973 561 13.67 10.30 5.36 5.17 5.15 4.95 3.32 3.25 3.13 0.153 0.150 0.137

MZAMS = 20 M�
Wind Scheme R [R�] MO depl [M�] MHe [M�] MCO [M�] ξ

O depl
2.5

η = 0.1 0.33 1.0 0.1 0.33 1.0 0.1 0.33 1.0 0.1 0.33 1.0 0.1 0.33 1.0

VdJNL 1044 1041 863 19.14 17.02 10.55 7.45 7.53 7.69 4.97 4.95 5.02 0.197 0.196 0.186
VNJNL 1042 1045 910 19.13 17.07 11.19 7.45 7.53 7.19 4.93 4.99 4.92 0.200 0.195 0.195
VvLNL 1040 950 581 17.78 12.01 8.79 7.45 7.52 7.62 4.96 4.90 4.93 0.202 0.188 0.193
KdJNL 1039 1029 947 19.20 17.39 11.73 7.40 7.33 7.41 4.95 4.84 4.86 0.149 0.162 0.207
KNJNL 1040 1030 949 19.20 17.41 11.99 7.40 7.32 7.41 4.95 4.87 4.87 0.200 0.167 0.188
KvLNL 1040 987 672 17.90 13.05 9.05 7.39 7.33 7.38 4.94 4.86 4.77 0.190 0.180 0.171

MZAMS = 25 M�
Wind Scheme R [R�] MO depl [M�] MHe [M�] MCO [M�] ξ

O depl
2.5

η = 0.1 0.33 1.0 0.1 0.33 1.0 0.1 0.33 1.0 0.1 0.33 1.0 0.1 0.33 1.0

VdJNL 969 989 820 23.57 21.36 13.51 9.79 9.19 9.24 6.48 6.20 6.17 0.221 0.191 0.198
VNJNL 972 983 831 23.61 21.42 13.89 9.47 9.19 9.23 6.70 6.13 6.21 0.221 0.163 0.141
VvLNL 971 990 760 23.27 21.17 12.61 9.79 9.19 9.24 6.56 6.12 6.29 0.232 0.193 0.095
KdJNL 930 935 689 23.75 19.85 14.25 9.59 9.88 10.32 6.62 6.94 6.99 0.174 0.110 0.220
KdJH 930 935 632 23.75 19.85 13.43 9.59 9.88 10.19 6.62 6.94 7.19 0.174 0.110 0.236
KNJH 929 944 652 23.77 20.04 13.69 9.59 9.88 10.18 6.52 6.69 7.13 0.193 0.211 0.202
KNJNL 929 944 695 23.77 20.04 14.38 9.59 9.88 10.22 6.52 6.69 7.24 0.193 0.211 0.225
KvLNL 946 906 784 23.26 16.89 15.62 9.59 9.90 10.70 6.62 6.82 6.99 0.203 0.170 0.222

MZAMS = 30 M�
Wind Scheme R [R�] MO depl [M�] MHe [M�] MCO [M�] ξ

O depl
2.5

η = 0.1 0.33 1.0 0.1 0.33 1.0 0.1 0.33 1.0 0.1 0.33 1.0 0.1 0.33 1.0

VdJNL 897 775 586 28.02 22.96 15.28 11.02 11.86 11.45 7.27 8.15 8.09 0.215 0.216 0.201
VNJNL 897 768 605 28.07 23.22 15.65 11.02 11.84 11.55 7.12 8.40 8.17 0.221 0.221 0.187
VvLNL 901 807 676 28.89 25.94 18.43 10.99 11.03 11.81 7.38 7.41 8.20 0.219 0.217 0.216
KdJNL 880 770 693 28.15 23.73 16.63 11.40 11.89 11.39 7.83 7.94 7.98 0.216 0.211 0.215
KdJH 880 770 680 28.15 23.73 16.25 11.40 11.89 11.39 7.83 7.94 8.10 0.216 0.211 0.188
KNJH 857 779 691 28.21 23.97 16.48 11.37 11.89 11.42 7.68 8.07 8.01 0.226 0.209 0.228
KNJNL 857 779 700 28.21 23.97 16.78 11.37 11.89 11.39 7.68 8.07 8.18 0.226 0.209 0.210
KvLNL 882 776 743 28.91 25.79 19.48 11.39 11.84 11.73 7.82 8.21 7.70 0.206 0.214 0.236
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Figure 3.4: HR diagrams for the MZAMS = 15M� models. Each panel corresponds to a
specific wind scheme, as indicated. Blue, green and red curves correspond to η = 1.0,
η = 0.33, and η = 0.1, respectively.
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Figure 3.5: HR diagrams for the MZAMS = 20M� models. Each panel corresponds to a
specific wind scheme, as indicated. Blue, green and red curves correspond to η = 1.0,
η = 0.33, and η = 0.1, respectively.
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Figure 3.6: HR diagrams for the MZAMS = 25M� models. Each panel corresponds to a
specific wind scheme, as indicated. Blue, green and red correspond to η = 1.0, η = 0.33,
and η = 0.1, respectively. The blue curves in the panels on the right of the first and second
row, and in the last row reach oxygen depletion as WR stars.
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Figure 3.7: HR diagrams for the MZAMS = 30M� models. Each panel corresponds to a
specific wind scheme, as indicated. Blue, green and red correspond to η = 1.0, η = 0.33,
and η = 0.1, respectively. The blue curves in the panels on the right of the first and second
row, and in the last row reach oxygen depletion as WR stars.
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3.1.1 The Compactness at Oxygen Depletion

The last three columns of Tab. 3.2 show the compactness parameter at oxygen depletion for
each model. One of the aims of this work is to better understand the influence of mass loss
on this parameter and, more generally, on the pre-SN core structure. However, because of
difficulties encountered in obtaining spatially converged structures2 during the advanced
burning stages (see also §2.3 and §B.3.3) – when mass loss has already been shut down in
MESA – it is hard to draw any conclusions from the results presented here.
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s30VdJNL 1.0, 67 isotopes, mesh delta coeff=0.2
s30VdJNL 1.0, 67 isotopes
s30VdJNL 1.0
s30 no mass loss

Figure 3.8: Evolution of the compactness parameter ξ2.5 for MZAMS = 30M� simulations
with different parameters. The cyan curve is computed without mass loss; all the others
use the Vink et al., de Jager et al., and Nugis & Lamers combination with η = 1.0 and they
differ in the nuclear reaction network (approx21.net for the red curve, mesa 67.net for
the blue and the green curves), and in the spatial resolution (mesh delta coeff), which is
(approximately) five times higher for the blue curve. The dot dashed lines mark the TAMS
and the end of helium core burning. The differences between the tracks are an effect of the
different spatial discretization (see text).

The four computations in Fig. 3.8 are for a MZAMS = 30M� star, computed with the
Vink et al., de Jager et al. and Nugis & Lamers (VdJNL) mass loss rate combination and
η = 1.0. The blue curve shows a run computed with a 67-isotope nuclear reaction network
(mesa 67.net) at “high spatial resolution” (mesh delta coeff=0.2, corresponding to 34852
computational cells at oxygen depletion), i.e. roughly five times the standard resolution
(mesh delta coeff=1.0, corresponding to 7829 computational cells at oxygen depletion). All
other curves shown were computed with standard resolution (mesh delta coeff=1.0). The
green curve is computed using the same 67-isotope nuclear reaction network (mesa 67.net),

2By spatially converged structure, I mean stellar structures that do not vary significantly increasing the spatial
resolution (i.e. the number of computational cells) of the mesh adopted for the numerical simulations.
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the red and the cyan curve use the reduced network adopted for most of this work, i.e. the
21-isotope approx21.net. The difference between these last two curves is that mass loss is
completely shut down for the cyan curve (i.e. η = 0).

The comparison between the red and cyan tracks in Fig. 3.8 shows the effect of mass loss
on the compactness parameter. The effect is smaller or comparable to changing the nuclear
reaction network (compare the red and green curves), the spatial resolution (compare the
green and the blue curves), or both (compare the red and the blue curves). The various nu-
merical experiments performed3 indicate that a variation of some of the parameters causes
changes in the spatial grid provided by MESA, which in turn causes variations in the com-
pactness during (late-)carbon burning, neon and oxygen burning. Therefore, even if mass
loss influences the compactness, its effect (at least until oxygen depletion) is too small to be
disentangled from the effects of the spatial resolution of the numerical simulation in the late
phases.
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s15 no mass loss
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Figure 3.9: Evolution of the compactness parameter for MZAMS = 15M�, solar metal-
licity models. The blue, red, and green curves are computed with standard resolution
(mesh delta coeff=1.0). The blue curve use the 67-isotope nuclear reaction network
(mesa 67.net), the other curves use the 21-isotope network used throughout this entire work
(approx21.net). The green and the blue curves use the Vink et al., de Jager et al. mass loss
rates, the red and the cyan are computed without mass loss (η = 0). The cyan curve is
not computed from ZAMS, but it is obtained restarting the red curve with a higher spatial
resolution from log10((tO depl − t)/[yr]) ∼ 3.

Figure 3.8 shows an example of the evolution of the compactness parameter as a func-
tion of time. Note that the overall qualitative behavior of ξ2.5 as a function of time does not

3I also ran models turning off the wind mass loss in each of the evolutionary phases, but the spread in the
final results is always smaller or comparable to the spread obtained when changing the resolution.
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change for different MZAMS, see also Fig. 3.9 – which is another example of the difficulties
in obtaining a converged core structure for another MZAMS. The compactness parameter
ξ2.5 stays almost constant during the main sequence, it increases during the hydrogen shell
burning phase and then, during core helium burning, it continues increasing slightly. Fi-
nally, ξ2.5 starts increasing much more rapidly during core carbon burning. The details of
the compactness behavior are much more uncertain in the last few years before oxygen de-
pletion (i.e. for log10((tO depl − t)/[yr]) . 1.5 for the MZAMS = 30M� models in Fig. 3.8),
but an overall trend of increase is clear and robust (see also [19]). This uncertainty arises
because of the difficulties encountered in obtaining a properly resolved and converged (i.e.
without variations with increasing the number of computational cells) core structure in the
spatial domain.

It is worth emphasizing that the post-oxygen depletion evolution of the star amplifies the
compactness [19]. Therefore, even if the effect of mass loss on ξ2.5 until this stage is small,
it may be the seed of significant differences in the compactness (and, more generally, in the
structure) at the onset of core collapse. However, with the adopted resolution, and, more
importantly, because of the lack of a convergence to the same behavior with increasing the
resolution, it is impossible to identify clearly what the effect might be.

Using a larger nuclear reaction network (providing a more realistic energy generation
rate, see §B.3) for neon and oxygen burning is certainly needed to improve these simula-
tions. Moreover, a finer spatial grid, likely made ad hoc by selecting the regions that need
higher resolution, would allow one to rule out the influence of the resolution on the results,
although at an increased computational cost.

3.2 Hot Phase Mass Loss

By definition, the hot phase of the evolution occurs when Teff ≥ Thot
eff

def
= 15000 K, i.e.

log10(Teff/[K]) ≥ 4.18, and with Xs > 0.4 (see §2.2.2). This is the longest phase in the
evolution of a star, since it corresponds roughly to the main sequence. The main sequence is
physically defined by the core nuclear burning, while here it is more meaningful to define
the different phases based on the surface of a star, from which mass is lost (both in nature
and in these numerical simulations). Because of the different definitions, the ”hot evolu-
tionary phase” is slightly longer than the main sequence, including the overall contraction
phase and ending at the start of the Sub-Giant Branch.

During the hot phase, two wind mass loss algorithms are commonly adopted in the simu-
lations of massive star evolution: Vink et al. (§1.4.5) and Kudritzki et al. (§1.4.6). Tab. 3.3 sum-
marizes some physical properties of the stellar models when Teff drops below Thot

eff (i.e. when
the mass loss rate switches to the cool phase algorithm) for each MZAMS and η factor.

Figure 3.10 shows the mass loss rate as a function of time and luminosity for η = 1.0 and
each MZAMS. The tracks stop when Teff ≡ Thot

eff . Analogous curves with different values of
the efficiency η are not shown since they are qualitatively similar, apart from a downward
shift on the ordinate. Note that this an important result: a modification of the mass loss rate
Ṁ with all the other parameters held constant might, in principle, significantly change the
surface properties of the star and cause a divergence of the tracks on the (t, Ṁ) and (L, Ṁ)
planes, instead of a mere shift.

The differences in the mass loss rate have a relevant effect both on the total mass and
the helium core mass at the end of the hot phase of the evolution (see §3.2.2), while the
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Figure 3.10: Hot phase (Teff ≥ 15000 K) mass loss rate as a function of time (top panel) and
luminosity (bottom panel) for η = 1.0. The qualitative behavior found with lower values
of η is similar except for a downward shift on the y-axis. Dashed curves use the Kudritzki
et al. algorithm (§1.4.6), while solid curves use the Vink et al. algorithm (§1.4.5). Each color
corresponds to a specific value of MZAMS.

compactness of these models at Teff = Thot
eff is almost unaffected, as Tab. 3.3 shows. However,

differences in the total mass, helium core mass and structure (e.g. temperature gradient) may
be the seed of significant variations in ξ2.5 during later stages (cf. Fig. 3.8, for example).
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Table 3.3: Radius (R), luminosity (L), total mass (Mtot), helium core mass (MHe) in solar
units, and compactness parameter (ξTeff=15[kK]

2.5 ) when Teff ≡ Thot
eff = 15000 K, i.e. when MESA

switches from the hot wind scheme to the cool wind scheme.

Hot wind
MZAMS η

R L Mtot MHe
ξ

Teff=15[kK]
2.5[M�] [R�] [105L�] [M�] [M�]

Vink et al. 15 1.0 34.94 5.45 14.51 4.73 0.013
Kudritzki et al. 15 1.0 35.25 5.64 14.72 4.50 0.014
Vink et al. 15 0.33 35.70 5.77 14.84 4.47 0.014
Kudritzki et al. 15 0.33 36.08 5.83 14.91 4.39 0.014
Vink et al. 15 0.1 35.94 5.85 14.95 4.41 0.015
Kudritzki et al. 15 0.1 36.25 5.90 14.97 4.37 0.015
Vink et al. 20 1.0 52.41 12.19 18.98 6.30 0.015
Kudritzki et al. 20 1.0 53.06 12.47 19.41 6.23 0.017
Vink et al. 20 0.33 52.55 12.56 19.67 6.31 0.017
Kudritzki et al. 20 0.33 53.42 12.96 19.80 6.26 0.017
Vink et al. 20 0.1 53.80 12.96 19.90 6.30 0.017
Kudritzki et al. 20 0.1 53.96 12.97 19.94 6.29 0.017
Vink et al. 25 1.0 69.25 21.27 23.09 8.23 0.015
Kudritzki et al. 25 1.0 73.95 24.68 23.75 8.60 0.015
Vink et al. 25 0.33 72.10 22.72 24.38 7.98 0.016
Kudritzki et al. 25 0.33 70.12 21.50 24.65 8.54 0.016
Vink et al. 25 0.1 74.32 24.28 24.81 8.25 0.016
Kudritzki et al. 25 0.1 71.44 22.89 24.89 8.41 0.016
Vink et al. 30 1.0 82.14 30.54 26.77 10.38 0.014
Kudritzki et al. 30 1.0 83.76 31.20 28.39 9.96 0.015
Vink et al. 30 0.33 84.31 32.18 28.99 10.35 0.015
Kudritzki et al. 30 0.33 86.39 33.28 29.47 10.56 0.015
Vink et al. 30 0.1 87.56 34.41 29.71 10.04 0.016
Kudritzki et al. 30 0.1 86.52 33.98 29.84 10.37 0.016

The differences in the total mass found at the end of the hot phase are easily understood.
The total mass lost is

∆M ≡
∫ t(Teff≡Thot

eff )

0
|Ṁ|dt ∼ 〈|Ṁ|〉∆thot phase , (3.4)

and the duration of the hot phase of evolution ∆thot phase is nearly identical for models of the
same MZAMS, while the average mass loss rate 〈|Ṁ|〉 depends on the algorithm adopted. In
general, the total amount of mass lost using the Kudritzki et al. rate is lower than using the
Vink et al. rate. In other words, the average mass loss rate of Kudritzki et al. is lower than
of the Vink et al., and the difference decreases with decreasing η, see Tab. 3.3. The average
mass loss rate from Vink et al. is higher because of its detailed treatment of the bistability
jump, see §3.2.1 for more details.

The differences in the helium core mass with the two algorithms are relatively small (few
percent of the total mass), but extremely important. They arise in the post-main sequence
evolution included in the hot phase, as discussed in more detail in §3.2.2. The relevance
of these differences can be understood in terms of the effects they have in the subsequent
Supergiant stage, see §3.3.3.

77



CHAPTER 3. RESULTS: WIND ALGORITHMS COMPARISON

The result that the compactness at the end of the hot phase is not affected by the mass
loss rate, and more importantly, that the compactness has roughly the same value for all
models, is not really surprising. For MZAMS ≥ 15M� the convective core is much larger
thanM = 2.5M�, which is the mass coordinate chosen to evaluate ξM. Furthermore, hy-
drogen burning occurs via the CNO cycle, whose energy generation rate is very temperature
sensitive. Convection, and, more in general, chemical mixing are treated identically in all
models. Thus, the differences in the central temperature of models of different mass are
small. Therefore, the chemical composition is homogeneous within the innermost 2.5M�,
and the thermal structure is very similar in all models. Even the post-main sequence evolu-
tion included in the hot phase does not significantly affect the inner 2.5M� (see also §3.2.2),
so all models have roughly the same ξ

Teff=15[kK]
2.5 , regardless of their total mass and mass loss

rate.
Figures 3.4–3.7, show that using the Kudritzki et al. wind scheme on the main sequence

produces a very small difference in the evolutionary tracks on the HR diagram between
models with η = 0.1 and η = 0.33. Additionally, Fig. 3.6 and, to a lesser extent, Fig. 3.7
shows a “loop-like” feature toward the end of the main sequence for models using the Ku-
dritzki et al. mass loss rate with η = 1.0. These loops span the interval 4.3 . log(Teff/[K]) .
4.5 and 5.25 . log(L/L�) . 5.3 for MZAMS = 25M�, while they are much smaller in am-
plitude, and concentrated around log(Teff/[K]) ∼ 4.4 and log(L/L�) ∼ 5.4 for MZAMS =
30M�. They can be explained by considering the M, L and vth ∝

√
T dependence of the

Kudritzki et al. rate (see Tab. 2.2). Note that vth = cs, where cs is the local speed of sound,
and it would be preferable to express the mass loss rate as a function of the speed of sound
at the critical point where g(r) = grad, i.e. where the mass flux is determined – because the
sound speed enters directly in the equation of motion of the gas. Note also that the local
temperature T where the mass flux is determined may be very different than the effective
temperature Teff, which is only a different way of expressing the radiative flux of the star.
However, Fig. 3.11, shows that, at least during the loop at the end of the main sequence, the
Kudritzki et al. Ṁ is rather insensitive to Teff, and seems to depend almost solely on L.

Models with MZAMS ≥ 25M� reach a high luminosity toward the end of the main se-
quence (see the first local maximum of the green curve in Fig. 3.11 – log10(L/L�) ∼ 5.3 at
t ∼ 7.073 Myr). Therefore, the mass loss rate peaks, and (if η = 1.0) the total mass is sig-
nificantly reduced and the luminosity decreases. Therefore, the evolutionary track on the
HR diagram is shifted slightly downward, and the mass loss rate is also reduced. With the
now decreased mass loss rate, the mass of the star remains high, and the regular evolution
(as would happen even without mass loss) makes the luminosity increase again, producing
another mass loss peak (at t ∼ 7.0765 Myr). This changes again the luminosity and produces
the loop-like feature at the end of the main sequence for models using the Kudritzki et al. al-
gorithm. The process works as if the initial increase of L and thus Ṁ shifted downward the
evolutionary track, producing a “self-damping” of the mass loss rate. MESA re-computes
self-consistently the models at each timestep, considering the new boundary condition from
modifications at the surface, so the shift on the HR diagram is not caused by initerpolation
between pre-computed tracks.

The loops increase the amount of time spent by the stars in a given portion of the HR
diagram. For MZAMS = 25M�, the increase is of ∼ 0.5 Myr (see Fig. 3.1), while it is lower
for MZAMS = 30M�, since the evolution of these stars is intrinsically faster because of their
higher mass. The longer time spent on the end of the main sequence directly translates
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Figure 3.11: Mass loss rate (top panel), effective temperature (center panel), and luminosity
(bottom panel) of the MZAMs = 25M� model computed with the Kudritzki et al. algorithm
and η = 1.0 during the “loop” at the end of the main sequence (cf. Fig. 3.6). The initial
bump of the luminosity causes an increase of the mass loss rate, that reduces the mass and
therefore the luminosity. Then, L increases again, as it would in the regular evolution even
without mass loss, and this cause again a second increase in the mass loss rate, resulting in
the loop seen in Fig. 3.6.

in a prediction on the relative number of stars in that portion of the HR diagram4 – that
can be tested observing large scale stellar populations (e.g. field stars – for which however
the observational mass determination is harder). Fig. 3.12 shows the number of MZAMS =
25M� stars as a function of L and Teff. The number of stars in each L and/or Teff bin is
proportional to the amount of time spent by the evolutionary track within that bin regardless
of the evolutionary stage of the star (e.g. if the bin may be crossed multiple times). A similar
histogram can be produced also for MZAMS = 30M�, and it is not shown since it does not
show significant differences.

The “loop-like” feature of the MZAMS ≥ 25M� Kudritzki et al., η = 1.0 computations
predicts a star count excess at log10(L/L�) ∼ 5.3 and log10(Teff/[K]) ∼ 4.42 in the right
panels of Fig. 3.12. The Vink et al. and Kudritzki et al. mass loss rates produce different cut-
offs in the upper luminosity and lower temperature for stars of MZAMS = 25M�. Fig. 3.12
also shows that it is very difficult to use population statistics to determine η, and that with
higher η the total mass is reduced more and so the evolutionary time increases, causing a
(very small) relative over-population at low luminosities.

Interestingly, as a result of this loop Kudritzki et al., η = 1.0, MZAMS = 25M� models
have larger radii than models with lower η, despite being less massive. This results in a
higher photospheric luminosity (L ∝ R2) for given Teff, see Fig. 3.6. Moreover, these models

4Note that, at this stage of the evolution, M(t) ∼ MZAMS is still approximately true.
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Figure 3.12: Number of stars (proportional to the time spent in the corresponding location
of the HR diagram, regardless of the evolutionary stage) as a function of L (top panels) and
Teff (bottom panels). The left (right) panels use the Vink et al. (Kudritzki et al.) mass loss rate.

do not reach as low a Teff as the other MZAMS = 25M� models (either using Vink et al.
algorithm during the hot phase or different η), and they reach oxygen depletion as yellow
supergiants without ever reaching the red side of the HR diagram (log10(Teff/[K]) ≤ 3.6,
[47]). It is also worth noting that the Kudritzki et al., η = 1.0 MZAMS = 25M� models have
a longer main sequence duration – because they evolve more slowly during the loop, acting
like lower total mass stars. This increases the time to reach oxygen depletion, see the upper
panel of Fig. 3.2.
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The “loop-like” feature and its effects are less pronounced in the MZAMS = 30M� models
since their evolution is much faster and the initial increase of the mass loss rate is smaller
(cf. orange curve in the top panel of Fig. 3.10). Models using lower values of η do not
have strong enough mass loss to trigger this loop (L increases at the end of the main se-
quence as well, but the corresponding increase of Ṁ is not sufficient), while models us-
ing the Vink et al. algorithm have a very different mass loss rate in the temperature range
4.3 ≤ log10(Teff/[K]) ≤ 4.5 (i.e. where the loop-like feature appears), because of the bistabil-
ity jump, see §3.2.1.

3.2.1 Effects of the detailed Treatment of the Bistability Jump in the Vink et al.
Algorithm

Figure 3.10 shows that the treatment of the bistability jump in the Vink et al. algorithm pro-
duces the large increase of the mass loss rate toward the end of the solid curves: Ṁ increases

by roughly one order of magnitude when5 Teff ∼ Tjump
def
= 25000 K. The details of the very

end of the curves depend on morphology of the overall contraction phase and the begin-
ning of the Sub-Giant Branch. In the MZAMS = 25M� model, there is a large drop after the
first increase (around t ∼ 7 Myr), because Teff decreases and crosses the bistability jump
temperature at the end of the main sequence and then increases again during the overall
contraction phase (see Fig. 3.6). A similar behavior is also found for MZAMS = {20, 30}M�
with lower η.

Figure 3.10 also shows that for the MZAMS = 15M� models, the Vink et al. mass loss
rate is lower than the Kudritzki et al. before the bistability jump (i.e. at higher temperature,
when the most common Fe ion is Fe IV). Increasing MZAMS the difference between the two
schemes at high temperatures decreases, until the Vink et al. rate is higher for almost the
entire hot phase (i.e. both above and below Tjump).

The relative increase of the Vink et al. mass loss rate with respect to the Kudritzki et al.
with increasing MZAMS is due to their different dependencies on the luminosity L and total
mass M (see also Tab. 2.2). Note that at temperatures lower than Tjump ' 25000 K (i.e. after
the bistability jump in the evolution of stars), the Vink et al. mass loss rate is always higher,
cf. Fig. 3.10.

The Vink et al. algorithm used for this study (see also Fig. 2.7 and §A.2) is a modification
of the default MESA routine for these wind scheme (see $MESA DIR/star/private/wind.f)
to smooth the jump. Note that the algorithm described in [25, 64] prescribes an inversion of
the function Ṁ(Teff) (see also Fig. 1.12). Instead, the routine used here interpolates between
the formulae below and above the temperature region of the inversion. The steepness of the
solid curves in Fig. 3.10 indicates, however, that the duration of the bistability jump is very
brief and the corresponding inversion lasts very shortly.

The presence of the bistability jump in the Vink et al. algorithm is the most noticeable
qualitative difference compared with the Kudritzki et al. algorithm. This leads to a signif-
icant difference in the helium core structure of the models, as I discuss in the next section
§3.2.2.

5Obviously, this happens at different times for different MZAMS: ∼ 11 Myr for 15M�, ∼ 8.5 Myr for 20M�,
∼ 6.5 Myr for 25M�, and ∼ 5.5 Myr for 30M�.
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3.2.2 Effects of the Hot Phase Mass Loss on the Helium Core

The helium core mass at the end of the hot phase (i.e. when Teff decreases below Thot
eff

def
=

15000 K), and the helium abundance profile at the helium core boundary, are important pa-
rameters for the subsequent evolution (e.g. [28] and references therein). During the subse-
quent stages, the hydrogen burning shell propagates outward from the helium core bound-
ary through the helium-rich region. This helium rich region exists because of the well known
contraction of the convective core during the main sequence, see §1.2.1. When the convective
core contracts, no more mixing happens in the regions left at its outer boundary. Because of
convection, these regions had the same chemical composition of the hydrogen burning core,
therefore they remain partially hydrogen depleted (i.e. helium rich). If an exponential over-
shooting scheme is used, the hydrogen and helium profile left are smooth, see the dashed
curves in Fig. 3.13. The details of the structure and composition in this region can trigger
a blueward evolution on the HR diagram [28], and produces, in some cases, extended blue
loops, e.g. see Fig. 3.4 (see also §3.3.3).

The helium profiles at TAMS (dashed curves) and at the end of the hot evolutionary
phase (solid curves) are shown in Fig. 3.13 for the MZAMS = 15M� models computed with
η = 1.0. Note that the two helium profiles at TAMS are practically identical, regardless of
the mass loss algorithm.

The helium core mass at the end of the hot evolutionary phase is determined by the post-
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Figure 3.13: Helium abundance profile for MZAMS = 15M�, η = 1.0 models computed with
the Kudritzki et al. rate (red curves) and Vink et al. rate (blues curves), respectively. Dashed
curves are at TAMS, solid curves are at the end of the hot evolutionary phase. The shadowed
region indicates the approximate location of the hydrogen shell at shell ignition. The step-
like profile of the solid curves, indicated by the arrow, is produced by the penetration of the
convective region into the region that was convective at ZAMS. Each step corresponds to a
different penetration episode.
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main sequence evolution, specifically by the penetration depth of the envelope convective
region above the hydrogen burning shell, see Fig. 3.13 and Fig. 3.14. The convective re-
gion exists because of the rapid expansion of the envelope – in response to the continued
contraction of the inert helium core – that steepens the temperature gradients in the inner
envelope (see also §1.2.3). Convective mixing injects fresh hydrogen from the outer layers
into the region where hydrogen is partially depleted. This transforms the smooth6 helium
abundance profile into a series of abrupt steps (each corresponding to a different episode of
penetration). This creates a clear edge of the helium core, whose location depends on the
depth of penetration of the convective region. Note that this process depends strongly on
the parameters adopted for convective mixing (described in §2.3).
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Figure 3.14: Kippenhahn plots for the energy generation rate and mixing processes in
MZAMS = 15M� models computed to the end of the hot evolutionary phase. The model
on the left panel uses the Vink et al. rate, the model on the right uses the Kudritzki et al.
rate, both with efficiency η = 1.0. The black dot dashed line marks the edge of the helium
core at the end of the hot phase for the model on the right panel, to emphasize the different
penetration depth of the convective layers on the two panels.

This is especially relevant for the MZAMS = 15M� models, whose density profile at Teff =
Thot

eff is shown in Fig. 3.15 (see also Fig. 3.13). The helium core boundary is the rapid drop in
density (because of the change in the chemical composition and mean molecular weight µ).

When using the Kudritzki et al. wind scheme and η = 1.0, the helium core mass at
Teff = Thot

eff is similar to that obtained with the Vink et al. with η = 0.33 (see also Tab. 3.3).
But, even more importantly, the helium core mass MHe at that point from the Vink et al.,
η = 1.0 models is much greater (by at least ∼ 0.2M�) than MHe for all the other models, see

6Such a profile would not appear to be smooth if a step-function overshooting algorithm were used, instead
of the exponential overshooting used in MESA, see Eq. 2 in [81].
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Figure 3.15: Density structure when Teff = 15000 K for the MZAMS = 15M� models com-
puted with the Vink et al. (upper panel) or Kudritzki et al. (lower panel) hot phase mass loss
rate. The zoomed plots focus on the edge of the helium core.

Fig. 3.15. This perplexing result can be explained in terms of the total mass of the models at
the end of the hot phase of evolution. The downward mixing of hydrogen by the convec-
tive shell happens after the Vink et al. rate exceeds that of Kudritzki et al. – because of the
detailed treatment of the bistability jump. Models that recently had a lower mass loss rate
(either because of η or the chosen algorithm) have a more massive envelope. Therefore, a
slightly higher energy generation rate (in the hydrogen burning shell) is needed to sustain
this more massive envelope. So the region including the hydrogen shell and the base of
the envelope contracts slightly, to increase the shell temperature and energy generation rate.
However, because of the steep temperature dependence of the CNO-cycle energy genera-
tion rate (cf. Eq. 1.6), a very small increase in temperature is enough to provide the required
luminosity. The outermost envelope responds by expanding (and thus cooling) more (as
the R and L entries in Tab. 3.3 confirm). The result is a steeper temperature gradient above
the hydrogen shell for more massive models, since their hydrogen shell is slightly hotter,
with a more extended envelope and lower effective temperatures. The steeper temperature
gradient makes a larger region convectively unstable, therefore the convective base of the
envelope penetrates deeper – producing deeper hydrogen mixing and a smaller helium core
(however, see also §3.3.3). This is possible because the envelope (and, in general, the star)
is not a rigid structure, but instead each region re-adjusts on the thermal timescale, that
depends on the local thermodynamical state each layer.

While the mass difference between the helium cores of the MZAMS = 15M� models at
the end of the hot phase may seem small (∼ 1%), it affects the subsequent evolution: all the
MZAMS = 15M� models computed with the Vink et al. wind scheme and η = 1.0 show a
blueward evolution (either a complete blue loop during helium core burning or a deviation
toward higher Teff, depending on the cool phase mass loss rate adopted, see also §3.3.3) in
later stages of their evolution, see Fig. 3.4. In contrast, models using η < 1 or the Kudritzki
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et al. rate (regardless of η) do not experience such loops.
The tailoring of the helium core extent by the penetration of the convective base of the

envelope seems to be inefficient in the MZAMS ≥ 25M� simulations. The analysis of the
MZAMS = 25M� models is complicated by the loop-like feature (discussed in §3.2, and
shown in Fig. 3.6) produced by the Kudritzki et al. rate. However, the correlation between a
larger MHe at Teff = 15000 K and a blueward evolution during the RSG phase of the evolu-
tion is found in all models (compare Tab. 3.3 and Fig. 3.4–3.7).

3.3 Cool Phase Mass Loss

Figures 3.1 and 3.2 show that most of the mass is lost after the main sequence, especially
during the cool phase. This is shown in Fig. 3.16, which shows the mass loss rate for all
models computed with η = 1.0. The mass loss rate during this phase is several orders of
magnitude larger than on the hot phase (Ṁ ∼ 10−5.25 − 10−4.75 M�yr−1 during the cool
phase, while Ṁ . 10−6.25 M�yr−1 earlier in the hot phase). Note that, in Fig. 3.16, different
values for η does not result in a simple shift of the plot on the ordinates: the morphology
of the curves for η = 1.0 is also qualitatively different from the the curves corresponding
to lower η. For η = 1.0, pronounced blue loops or blueward evolutionary features (i.e.
decreases of the mass loss rate) are found.

The increase in the mass loss rate during the cool phase can be understood in terms of the
stellar radius: during this phase the stellar radius can exceed several hundred R�, therefore,
they have small effective surface gravity (g ∝ R−2), and it is easier for particles to leave the
gravitational well of the star. Note that this aims to be a physical justification, none of the
mass loss algorithms used include an explicit dependence Ṁ ≡ Ṁ(g).

During the cool phase, mass loss can be dust-driven, see e.g. [62], although the process
of dust formation in RSG envelopes is still debated in the literature. Even using algorithms
based on line-driven processes, wind mass loss during this stage is both very large and very
uncertain. The empirical determination of the mass loss rate in this phase is complicated
by the possible impulsive mass loss events (e.g. wave driven, pulsational instabilities, LBVs
eruptions), which can dramatically reduce the total mass without any contribution from
stellar winds.

The cool mass loss rate hardly influences the helium and carbon-oxygen core masses and
the final radii. For MZAMS = {15, 20}M� models, the van Loon et al., η = 1.0 rate produces
smaller radii (see §3.3.3), but this is not true for higher initial masses (see §3.3.2).

The modeled effective temperature at oxygen depletion depends on the amount of mass
lost during the cool phase and on how deep the layer revealed by mass loss is. Since the
subsequent, post-oxygen-depletion evolution is too fast to influence the stellar surface, the
effective temperature at oxygen depletion (roughly) corresponds to the effective tempera-
ture at the onset of core collapse. Therefore, mass loss may play a role in the solution of
the so-called “RSG problem” (see §1.2.3). However, eruptive mass loss could be much more
important winds to solve the problem. In fact, in the grid presented here, no proper BSG
(with log10(Teff/[K]) & 3.8, [47]) is produced, even if many models – especially those with
η = 1.0 – reach oxygen depletion after a slight blueward shift on the HR diagram, and may
be considered as YSG (with 3.6 < log10(Teff/[K]) < 3.8, [47]), see Fig. 3.5–3.7.
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|/

[M
�

yr
−

1 ]
)

H
ot

w
in

d:
K

ud
ri

tz
ki

et
al

.
η = 1.0

012345678
log10((tO depl− t)/[yr])

-8.5

-8.0

-7.5

-7.0

-6.5

-6.0

-5.5

-5.0

-4.5

lo
g 10

(|Ṁ
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Figure 3.16: Mass loss rate with different algorithms and η = 1.0. Solid, dashed and dot
dashed curves correspond to the use of the de Jager et al., the Nieuwenhuijzen et al., and
the van Loon et al. cool wind algorithm, respectively. Each color corresponds to an initial
MZAMS. The upper (lower) panel is for models computed using the Kudritzki et al. (Vink et
al.) scheme during the hot phase of the evolution. Note that I do not show the Ṁ reduction
that is artificially applied by MESA when Tc ≥ 109 K. During blue loops, Ṁ decreases as
the star shrinks in radius. WR models are not omitted: they correspond to the models with
MZAMS ≥ 25M� using the de Jager et al. or Nieuwenhuijzen et al. schemes in the upper
panel (i.e. red and orange solid and dashed curves). The switch to the WR wind scheme
corresponds to the vertical decrease of Ṁ around log10((tO depl − t)/[yr]) ∼ 5.
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3.3.1 Comparison of the Jager et al. and Nieuwenhuijzen et al. Algorithms

It is very hard to find systematic qualitative and quantitative differences between the de
Jager et al. and the Nieuwenhuijzen et al. mass loss rates – as already noticed in [45]. The
spread between the final total masses, the helium core and carbon-oxygen core masses, and
the stellar radii increases slightly with η, but it is always very small – see Tab. 3.2.

The lack of significant differences is, however, not surprising, as both algorithms are
derived from the same data set. From Tab. 2.2, and Eq. 1.42 and Eq. 1.45, it may seem that
the two algorithms have little in common as they use different variables to express Ṁ, and
therefore they have also different coefficients. But, it must be stressed that the variables
chosen are likely not independent (e.g. because of the well known empirical relations L ≡
L(M)), and they may not be a complete set – in the sense that they may not completely and
uniquely parametrize the mass loss rate. This last caveat applies to all mass loss algorithms
compared in this thesis.

From the theoretical point of view, it may be preferable to use the de Jager et al. rate. This
can be interpreted directly as a relation between the mass loss rate and the position on the
HR diagram (as it is in the form Ṁ ≡ Ṁ(L, Teff)), but it has a meaning only in the sense of a
statistical average over the possible behaviors at a given point of the HR diagram. While the
Nieuwenhuijzen et al. rate gives very similar results, it suffers from the model-dependence
introduced to determine the total mass of the “average” star at any point of the HR diagram,
which is conceptually disturbing.

3.3.2 The Van Loon et al. Algorithm

Models of MZAMS . 25M� computed using the van Loon et al. rate, regardless of η, reach
oxygen depletion with much smaller final masses than those computed with other cool
phase mass loss algorithms. This is shown in Fig. 3.1, Fig. 3.2, and Tab. 3.2. In contrast,
for MZAMS & 25M� – the exact threshold depending also on which hot phase mass loss is
used – MO depl is larger for models using the van Loon et al. rate. This is because at high
MZAMS the van Loon et al. rate is so large, that the star loses rapidly a large amount of mass
and reveals its hotter and deeper regions sooner. At higher effective temperatures, the mass
loss rate is generally smaller (Teff ∝ R−2 for a given L, so higher Teff correspond to smaller R
and larger g). In fact, the red and orange dot-dashed curves in Fig. 3.16 (especially in the top
panel) first rise above the others, and then decrease when Teff is so high that Ṁ is reduced.

The rather extreme mass loss rate provided by the van Loon et al. algorithm is caused by
its very steep temperature dependence, Ṁ ∝ T−6.3

eff , cf. Tab. 2.2. This comes from the physical
picture assumed for the description of the wind, i.e. the dust-driven (instead of line-driven)
process.

It is worth reminding the reader that, although the van Loon et al. mass loss rate is widely
used for the simulation of massive RSG, see e.g. [46–48, 61], it was derived from a sample
of dust-enshrouded pulsating AGB stars in the LMC, and was found to have a good agree-
ment with a small sample of galactic RSGs for which mass loss had been determined with
many assumption from observations (see §5 of [62]). One reason the van Loon algorithm is
widely used is because of its extremely high mass loss rate, thought to be suitable (with an
appropriate choice of η ≥ 1) for reproducing the maximum mass shed by a star during its
RSG evolution (including eruptive, dynamical events). Nonetheless, the physical conditions
in the layers of the star at which mass loss is determined may be significantly different from
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those assumed by Van Loon et al.
Fig. 3.4 and Fig. 3.5 show that the high mass loss rate provided by Van Loon et al. with

η = 1.0 drives a blueward evolution in all the models with MZAMS ≤ 20M�, regardless
of the initial conditions (i.e. which hot phase mass loss algorithm is used previously). The
precise morphology of the evolutionary track on the HR diagram, however, depends on the
structure remaining after the hot phase. The blueward evolution of all models in the grid is
studied in more detail in §3.3.3.

3.3.3 On the Morphology of the Blueward Evolution and Blue Loops

Figure 3.4 shows two different kinds of blueward evolution for MZAMS = 15M� models
computed with η = 1.0 (blue curves). The first is the blue loop found in the top left and
center left panels of Fig. 3.4. The second, characterized by the absence of a loop (the tracks
do not go back to the red and cool side of the HR diagram), is found in the two bottom
panels of Fig. 3.4, and analogous tracks can also be seen in the two bottom panels of Fig. 3.5,
referring to simulations with MZAMS = 20M�.

The first kind of blueward evolution, i.e. the proper blue loop of the top and center left
panels of Fig. 3.4, lasts ∼ 6 × 105 yr and happens during helium core burning. Fig. 3.17
shows the radius of the MZAMS = 15M� models, the blueward evolution correspond to a
decrease in radius. The blueward evolution can also be seen as a decrease of the mass loss
rate (because of the decrease in R and thus the increased surface gravity of the star) in the
dashed and dot-dashed blue curves in the bottom panel of Fig. 3.16.

Both the HR diagrams and Fig. 3.17 show that the differences between the combination
of algorithms Vink et al. plus either de Jager et al. or Nieuwenhuijzen et al. with η = 1.0 are
very small (as discussed in §3.3.1), especially for η < 1. Moreover, the use of the same cool
mass loss algorithms (de Jager et al. or Nieuwenhuijzen et al.) combined with the Kudritzki
et al. mass loss rate on the hot side of the evolution does not result in blue loops (see the top
and center right panels in Fig. 3.4). This indicates that the first kind of blueward evolution
(i.e. the blue loops) must be caused by the structural differences developed during the hot
phase of the evolution.

The blueward evolutions of the first kind (i.e. the blue loops in the top left and center
left panels of Fig. 3.4) for models of MZAMS = 15M� start at ∼ 13.3 Myr, when the hydro-
gen burning shell reaches the edge of the helium core 7. This also corresponds roughly to
when the convective envelope reaches its maximum extent, completely mixing the chemical
composition above the hydrogen shell and smoothing the steps of Fig. 3.13.

Therefore, at the onset of the first kind of blueward evolution, the hydrogen burning
shell reaches a region where much more fuel is available, and this results in a momentary
increase of the energy generation rate. The blue loops are a result of the re-adjustment (on a
thermal timescale) of the stellar structure to the increased shell luminosity. For models with
η < 1, no blueward evolution occurs because the edge of the helium core lies much deeper
in the star, and the surface is effectively decoupled from the shell when the latter reaches the
edge of the helium core. All re-adjustments take place at the base of the envelope without
affecting the surface (note also that the radii of models with η < 1 are larger).

7Note that the hydrogen shell has only consumed the hydrogen left in the helium rich region so far, see
Fig. 3.13. Therefore the helium core mass is still roughly the same it was at the end of the hot evolutionary
phase.
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Figure 3.17: Radius as a function of time for the MZAMS = 15M� simulations. Solid,
dashed, and dot dashed curves correspond to η = 1.0, η = 0.33, and η = 0.1, respectively.
The wind scheme used are labeled according to Tab. 2.1. The blue loops correspond to the
radius decrease between∼ 13.35 and∼ 13.39 Myr (green and blue solid curves). The second
kind of blueward evolution can be seen as a radius decrease in the late stages for the orange
(starting at ∼ 13.85 Myr) and red (starting at ∼ 14.05 Myr) solid curves.

If the van Loon et al. rate with efficiency η = 1.0 is used, the total mass of the star at
t ' 13.35 Myr is already much reduced (see the top panel of Fig. 3.1) – in particular, it
is already smaller than the final total mass obtained using the other mass loss algorithms.
However, the radius of these models is roughly equal to the radii of other models using
η = 1.0 (see Fig. 3.17), so the envelope density is much lower. Fig. 3.18 shows the density
profile of MZAMS = 15M� models computed with the Vink et al. rate during the hot phase,
and η = 1.0. As expected, the density of the outer portion of the model using the van Loon
et al. cool wind scheme is much lower, while models using the Nieuwenhuijzen et al. and the
de Jager et al. rate are practically identical. Note that the hydrogen shell source, indicated
by the shaded region, lies at the edge of the helium core, cf. Tab. 3.3. The lower envelope
densities explain why the models using the Vink et al. and van Loon et al. combination with
η = 1.0 do not experience the first kind of blueward evolution: the thermal timescale of
the outer envelope for these models is longer, and the re-adjustment is confined to the inner
envelope, without affecting the surface of the star.

As models using the van Loon et al., η = 1.0 rate continue their expansion, without
any early blueward evolution, they continue to experience a high mass loss rate (see also
Fig. 3.16). This, in turn, exposes deeper layers of the star and causes the second type of
blueward evolution, i.e. the one found in the bottom panels of Fig. 3.4 and Fig. 3.5, where
the van Loon et al. rate with η = 1.0 is used, regardless of the hot wind scheme adopted.
Therefore, both the damping of the first kind of blueward evolution and the onset of the
second kind of blueward evolution later on are an effect of the very high mass loss rate
provided by the van Loon et al. algorithm.
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Figure 3.18: Outer density profiles of MZAMS = 15M� models before the onset of the blue
loops (first kind of blueward evolution). The Vink et al. rate is used during the hot phase,
the legend indicates the cool wind scheme, the efficiency is η = 1.0. The shaded region
corresponds roughly to the hydrogen burning shell, which lies inside the helium core.

Other examples of blue loops (of the first kind) happening during helium core burning
can be seen in MZAMS = {25, 30}M� models using the Kudritzki et al. rate with η = 1.0
during the hot phase, regardless of the cool wind scheme adopted (see Fig. 3.6–3.7). How-
ever, for models using the van Loon et al. rate during the cool phase of evolution the extent
of the loop is smaller.

The presence and morphology of the blue loop are highly uncertain, because they depend
strongly on details of the core contraction during the main sequence and the convective en-
velope penetrating into the old core at the end of the hot evolutionary phase. Moreover, the
spatial and temporal variations of quantities in the star must be properly resolved8, since
the precise location of the helium core edge is so important for the onset of these blue loops.
A possible observational probe of the presence of such blue loops is the estimate of the
relative populations of red, blue and yellow supergiants in a cluster, to compare with the
evolutionary tracks presented here. However, even if this were possible, the large degen-
eracy between the parameters (e.g. overshooting length, αmlt, wind efficiency and scheme,
etc...) that may cause a blue loop would not yield any conclusions regarding the correctness
of the the wind algorithm used during the hot phase and its efficiency (i.e. Vink et al. with
η = 1.0).

3.4 WR Mass Loss

As already mentioned in §2.2.2, the algorithmic definition of a WR star used in this work,
i.e. Xs < 0.4, is far from the observational definition of a WR star. A real star is classified

8This has been carefully checked for the simulations presented here, see §2.3.
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as a WR star based on features in its spectrum, namely, the hydrogen depletion9 (e.g. [97]),
the presence of broad emission lines (e.g. [98, 99]) indicating a strong and dense wind with
a very steep density gradient, and high ratio v∞/vesc. Moreover, without computing the
synthetic stellar spectra, it is impossible to discriminate between the various sub-classes of
WR stars defined in the literature (WN, WC, WO, WNL, e.g. [90, 98, 100]). However, it is
common practice in stellar evolution simulations to adopt a simple condition on the surface
hydrogen abundance (sometimes coupled to a condition on Teff) to switch to a WR wind
mass loss algorithm, something that would never happen in a real star.

The purpose of this section is to compare two WR mass loss algorithms: Nugis & Lamers
(§1.4.7), and Hamann et al. (§1.4.8). Other mass loss algorithms for WR winds are available in
the literature, but they apply to specific subsets of WR stars, e.g. Grafener et al. [43] propose
an algorithm for WR stars of the WNL subclass, expected to be more massive than 30M�.

The models available for this comparison lose enough hydrogen envelope to reach the
Xs < 0.4 threshold, i.e. those with MZAMS = {25, 30}M� using the combination of the
Kudritzki et al. and either Nieuwenhuijzen et al. or de Jager et al. rates, with efficiency η =
1.0. This means that eight (=2 MZAMS × 2 cool wind schemes ×2 WR wind schemes) of
the 144 simulations in this grid require the switch to the WR mass loss algorithm. The HR
diagrams for these models are the blue curves in the uppermost right, top center right, and
bottom panels of Fig. 3.6 (MZAMS = 25M�) and Fig. 3.7 (MZAMS = 30M�).

Other models get very close to this algorithmic WR star definition: MZAMS = 25M�
models using the Kudritzki et al. and the van Loon et al. rates with η = 1.0 (blue curve in the
lower center left panel of Fig. 3.6) reach oxygen depletion with Xs = 0.401; MZAMS = 30M�
models using the Vink et al. rate and the de Jager et al. rate (blue curve in the uppermost
left panel of Fig. 3.7) or the Nieuwenhuijzen et al. (blue curve in the top center left panel of
Fig. 3.7) with η = 1.0 end with Xs = 0.404 and Xs = 0.406, respectively. A small variation of
the parameter set adopted may make these stars reach the Xs < 0.4 threshold. For MZAMS ≤
20M� no models approach the WR threshold.

It is worth emphasizing that none of the models using a lower efficiency η < 1.0 (e.g.
to account for the wind clumpiness) get close to the WR threshold. In other words, if the
wind mass loss rates are indeed overestimated – as it has been suggested many times (e.g.
[7, 49]) – then single massive stars with MZAMS ≤ 30M� are not WR progenitors10. This fact
does not rule out the possibility that wind rates are overestimated, since other WR forma-
tion channels are possible and may be dominant (e.g. binaries, eruptive and/or pulsational
events that can remove the hydrogen envelope partially or completely), and/or WR progen-
itors may be more massive on the ZAMS (see also §3.1, and, e.g. [30, 90]). However, the lack
of WR models with η < 1.0 contradicts the so-called ”Conti scenario” (see e.g. [5, 78, 91] and
references therein) for the evolution of single massive stars, as e.g. [78] also suggests. The
“Conti scenario” is the standard empirical picture for the evolution of a single massive star,
which, for MZAMS . 40M� predicts the evolution from O giant, to RSG, to (in some cases)
LBV and finally WR star, before exploding as type Ib/Ic SN, [5]. To be more detailed, the
complete picture of the “Conti scenario” is the following evolutionary sequence, [7, 91]:

O→ Of/WNH→ RSG→ LBV→WN→WC→WO→ Type Ib/Ic SN .

9Note that spectroscopy provides only relative abundances.
10However, this result depends on the many assumptions made to produce the models: the treatment of

convection and over/undershooting which determine the core dimensions, the algorithmic definition of a WR
star adopted, etc. See also §3.1.
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Figure 3.19: Surface abundance of hydrogen for the models reaching the threshold for
switching to the WR mass loss rate. Cyan curves use the Nugis & Lamers WR mass loss
rate, magenta curves use the Hamann et al. rate. The top panels are for MZAMS = 25M�, the
bottom panels are for MZAMS = 30M�. The left panels use the de Jager et al. cool mass loss
rate, right panels use the Nieuwenhuijzen et al., while all models shown use the Kudritzki
et al. hot mass loss rate. Dot-dashed vertical lines indicate the TAMS and the end of helium
core burning (Yc = 0). The horizontal black line marks the threshold for switching to the
WR mass loss algorithm.

Note that in this scenario the LBV phase is an intermediate stage between RSG and WR
stars, which is another weak point of this scenario, see e.g. [78].

Figure 3.19 shows the surface abundance of hydrogen Xs as a function of time for the
eight models reaching the WR stage. All models become WR stars during late-helium core
burning, and this phase lasts . 105 yr, see also Tab. 3.4. This would be consistent with the
expected duration for WR stars of M . 30M� inferred from population statistics, e.g. [90].
However, the phase during which mass loss is on with full efficiency is shorter, since MESA
progressively decreases the mass loss rate when Tc ≥ 109 K.
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Table 3.4: Radius (RO depl), total mass (MO depl), He core mass (MHe), CO core mass (MCO)
and mass lost during the WR phase (∆MWR) in solar units, compactness parameter at oxygen
depletion, and duration (∆tWR) of the WR phase for all the models reaching this stage. The
first column indicates the mass loss algorithm combination used, see Tab. 2.1 and Tab. 2.2
for details. The results of the first five columns overlap with those highlighted in Tab. 3.2.

MZAMS = 25 M�, η = 1.0

Wind Scheme
R MO depl MHe MCO

ξ
O depl
2.5

∆tWR ∆MWR
[R�] [M�] [M�] [M�] [Myr] [M�]

KdJNL-WR 689 14.25 10.32 6.99 0.220 0.11 0.66
KdJH-WR 632 13.43 10.19 7.19 0.236 0.11 1.48
KNJH-WR 652 13.69 10.18 7.13 0.202 0.09 1.24
KNJNL-WR 695 14.38 10.22 7.24 0.225 0.09 0.55

MZAMS = 30 M�, η = 1.0

Wind Scheme
R MO depl MHe MCO

ξ
O depl
2.5

∆tWR ∆MWR
[R�] [M�] [M�] [M�] [Myr] [M�]

KdJNL-WR 693 16.63 11.39 7.98 0.215 0.04 0.30
KdJH-WR 680 16.25 11.39 8.10 0.188 0.04 0.68
KNJH-WR 691 16.48 11.42 8.01 0.228 0.03 0.53
KNJNL-WR 700 16.78 11.39 8.18 0.210 0.03 0.24

The total amount of mass lost during the WR phase is relatively small (see also Tab. 3.4),

∆MWR

MZAMS −MO depl
. 10% , (3.5)

and it is smaller for the MZAMS = 30M� models since they evolve faster. During the
WR phase, the amount of mass shed with the Hamann et al. rate is higher by a factor be-
tween 2 to 3 than with the Nugis & Lamers rate. Since the WR models presented here have
log10(L/L�) > 4.5 during their entire WR evolution, the Hamann et al. rate has a steeper
dependence on L than the Nugis & Lamers rate (see Tab. 2.2), which explains the higher rate
and total mass loss using the Hamann et al. algorithm. Models computed with the Hamann
et al. rate have slightly smaller photospheric radii at oxygen depletion. However, as men-
tioned in §1.4.7 (see also [74]), the concept of a photosphere is problematic for the optically
thick atmospheres and winds of WR stars: the optically thick surface that is observed is not
in hydrostatic equilibrium. In this light, the small difference in radius found in the results of
these simulation is likely not very significant, but it is a result of the use of the different WR
wind algorithms.

Table 3.2 shows some general trends when comparing models reaching the WR algorith-
mic threshold and models with the same efficiency η = 1.0 that do not (because of the use of
a different wind scheme). The radii at oxygen depletion of WR stars with MZAMS = 25M�
tend to be smaller (R . 700R�) than non-WR stars at the same stage (R & 750R�). This is
not true for MZAMS = 30M� models: WR stars of this initial mass have radii R . 700R�,
but the non-WR models can be smaller (even by ∼ 100R�). The differences in final masses
MO depl, and helium and carbon-oxygen core masses are not particularly pronounced, some
of the non-WR models can be less massive than WR models (e.g. s25VvLNL 1.0, which,
however, is very close to the WR threshold, see above), or end with a larger helium (e.g.
s25KvLNL 1.0) or carbon-oxygen (e.g. s25VNJNL 1.0) core. This illustrates the importance
of chemical mixing up to the surface to reach the WR algorithmic threshold: while mass loss
reveals deeper layers, these are sufficiently hydrogen depleted to switch to the WR wind
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Figure 3.20: Radius for the WR models. Cyan curves use the Nugis & Lamers WR mass
loss rate, magenta curves use the Hamann et al. rate. The top panels are for MZAMS =
25M�, the bottom panels are for MZAMS = 30M�. The left panels use the de Jager et al. cool
mass loss rate, right panels use the Nieuwenhuijzen et al., while all models shown use the
Kudritzki et al. hot mass loss rate. Dot-dashed vertical lines indicate the TAMS and the end
of helium core burning (Yc = 0). Note the radius decrease during core helium burning, and
the subsequent re-expansion.

scheme only if sufficient helium (and, to a lesser extent, metals) is brought up by convection
(and/or other mixing processes), i.e. if Ys + Zs ≥ 0.6.

Figure 3.20 shows the evolution of the photospheric radius (evaluated by MESA) in time.
During core helium burning, the radius decreases, but it never reaches the typical radius of
WR stars. At the end of core helium burning the radius inflates again, reaching a maximum
of∼ 800R�, and then settles to its final value. Fig. 3.20 also shows that, if the Kudritzki et al.
wind scheme is used during the hot phase, the final radii when using the Hamann et al. and
the Nugis & Lamers rates are different by about∼ 12%. In particular, models computed with
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the Hamann et al. rate are slightly more compact. Note that the final radii of the simulated
WR (∼ 700R�) stars are much larger than those usually cited for WR (e.g. [101]), which are
more than an order of magnitude smaller. The presence of strong winds, with a very strong
stratification complicates the definition of the stellar radius in WR stars, [90]. The optically
thick surface of these stars is likely not in hydrostatic equilibrium. MESA does not compute
the spectral distribution of the luminosity, and the radius is computed using the bolometric
luminosity. However, such a striking discrepancy remains perplexing and casts even more
doubt on the computational definition of WR stars. All WR models presented here barely
reach the hydrogen depletion required for the switching to the WR wind scheme, and it is
questionable whether they would be observationally classified as WR, but, in the modeling
context, the differences presented here between the Hamann et al. and the Nugis & Lamers
rate are relevant results.

The possibility of “envelope-inflation” for stars approaching the (classical) Eddington
limit,

L ' Lcl
Edd

def
=

Lradκe

4πcGM
, (3.6)

where κe is the opacity from electron scattering (instead of the local opacity κ(r) used in
Eq. 1.14, where I defined the “modified” Eddington luminosity), is an active research topic
(see, e.g., [101] and references therein). However, even this envelope inflation can hardly
reconcile the stars obtained in this grid with what would be called a WR stars from obser-
vations.
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CHAPTER 4

Results: Simplified Envelope Shedding Mass Loss

It’s better to burn out, than to fade away
[N. Young, “Hey Hey, My My (Into the Black)”, Rust Never Sleeps]

4.1 Introduction

In this chapter, I present the results of the simulation of the evolution of a solar metallicity,
MZAMS = 15M� star, with varying levels of mass stripping artificially activated at differ-
ent evolutionary stages. These are an attempt to explore the effects on the history and final
structure of a massive star caused by an impulsive, brief, dynamical mass loss event, that
could remove part or all of the hydrogen rich envelope. These events might happen on
shorter timescales than the thermal and/or dynamical timescale of the star, resulting in a
non-thermal equilibrium and/or non static readjustment of the structure. The procedure
(see §2.4) bypasses the limitations of presently available stellar evolution codes that can-
not properly account for these events. Possible theoretical examples (pulsational instabili-
ties, RLOF, LBVs eruptions1, etc., see e.g. [1, 7, 50]) and observational evidence of envelope
shedding events are available (see also §1.4.9). The set up for these simulations, stripping
process, and choices for when to strip away several portions of the envelope are described
thoroughly in §2.4, along with their advantages and shortcomings.

4.2 Stellar Structures after the Stripping Process

Figure 4.1 shows the evolutionary tracks of the stripped models on the HR diagram. The
evolution follows the curve of the unstripped reference model (blue curve) until the point of
stripping, and then jumps to the point from where the curve restarts with a different color.
Each color corresponds to a different amount of mass removed from the envelope (indicated
in units of M� by the number in the model name). The tracks for the pseudo-evolution
during which the stripping occurs are not plotted. Note that I remove the entire convective
portion of the envelope (and nothing more) in the model hMR 5M�. The amount of mass
lost in the scenario of an unstable RLOF event triggered at half maximum radius is exactly
5M�.

1These, however, are not addressed in this work, since the MZAMS of the reference model is too small to reach
the LBV instability region of the HR diagram.
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Figure 4.1: HR diagrams for the models stripped at Teff = 104 K (mSGB series, top panel), R & 375R� (hMR
series, central panel), and at maximum extent of the convective envelope (MCE series, bottom panel). The point
of stripping is indicated by symbols in each panel. The point from which the regular evolution resumes are
marked by the letters A,B,C in each panel. From these points, the stripped models initially move downward,
and then up again, either at roughly the same Teff or higher, depending on the amount of mass stripped.
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Note that using a coarser spatial resolution for these models eliminates the blue loop seen
in the 15M� models using the Vink et al. and de Jager et al. rates with η = 1.0. Such blue
loops would be expected for the unstripped reference model, cf. Fig. 2.9. Using a coarser
resolution saves some computational time, since the fine details of the models presented
here are expected to be inaccurate, because of the crude approximations for the stripping
procedure.

All stripped models jump from the stripping point to the cool side of the HR diagram,
roughly all to the same log10(Teff/[K]) ∼ 3.55 and log10(L/L�) ∼ 4.9 (see Tab. 4.1). Tab. 4.2
shows the relative variation of Teff, L, and of the net energy release from hydrogen burning,

WH
def
=
∫ Mtot

0
(εPP + εCNO)dm , (4.1)

during the stripping process. The relative variations of WH are always smaller than those of
L. The relative variations of Teff are small for the hMR and MCE series, since their stripping
points are already on the red side of the HR diagram, i.e. a significant portion of the envelope
is convective and the evolutionary track is almost as near as it can be to the Hayashi track
for fully convective models (see also §2.4 for a description of the stellar structure at each
stripping point).

The reason for the differences in the relative variation of L and WH is that εnuc is a function
of the thermal state of the burning region, εnuc ≡ εnuc(ρ, T, µ), as does WH. Stripping is
very fast2 compared to the nuclear timescale, therefore µ does not vary significantly during
the episodic mass loss event. T and ρ in the hydrogen shell readjust on the local thermal
timescale of the shell, which does not depend on the total mass of the star. Therefore, the
mass removal influences the hydrogen shell only weakly, and the envelope expands (see
Tab. 4.1) until the energy flux from the shell can be carried outward. Note that the envelope
expansion strongly decreases the outer density, and, therefore, it is easier for photons to
stream out. This enforces an increase of the radiative losses, that can be seen in Tab. 4.2 as
an increase of L much larger than the (relatively small) increase of εnuc. When the regular
evolution resumes after the stripping, L decreases again, indicating that the radiative losses
during the stripping process are too high compared to the power from the nuclear burning
happening in the shell. The post-stripping Teff, and L are similar for all models because the
stripping points are very close in time (the difference is of O(104) yr) and the shell energy
generation rates at each stripping point are very similar.

As mentioned in §2.4, regular hydrostatic stellar evolution works exactly in the oppo-
site way: the energy loss from the surface determines the energy generation rate in the inner re-
gions (burning shells and core), while here the energy generation rate cannot vary much
(cf. Tab. 4.2) during the mass loss event, and the outer portion of the star must readjust to
it. This is because the stripping process mimics events that are not hydrostatic and ther-
mal equilibrium processes. Moreover, the reader must keep in mind that in these simulated
events, the total amount of mass removed (or, equivalently, the new desired mass) is artifi-
cially imposed, while in reality it may depend on the structure of the inner regions of the
star.

Figure 4.1 shows that even if the stars become colder than the reference model just after
stripping, they all evolve toward the hot side of the diagram afterward. The most stripped
models reach log10(Teff/[K]) & 3.8 before moving again slightly to the cool side. All stripped

2During the stripping process time is held fixed – but in order to find a solution to the stellar structure
equations, all the quantities are allowed to change, see §2.4.
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Table 4.1: Total mass (M), hydrogen-rich mass (MH), radius (R), luminosity (L), effective
temperature (Teff), surface abundance of hydrogen (Xs) and hydrogen burning power (WH)
in solar units for the stripped models right after the stripping (i.e. at the first iteration outside
the pseudo-evolution loop), and for the reference model at the stripping point.

Model
M MH R L Teff Xs

WH
[M�] [M�] [R�] [L�] [K] [L�]

unstripped mSGB 14.48 10.67 80 49343 9632 0.71 58782
mSGB 1M� 13.48 9.61 746 76089 3512 0.68 57875
mSGB 2M� 12.48 8.61 772 77824 3473 0.68 59396
mSGB 3M� 11.48 7.61 793 78958 3438 0.67 60446
mSGB 4M� 10.48 6.61 817 80299 3401 0.67 62519
mSGB 5M� 9.48 5.67 796 76210 3401 0.66 59774
mSGB 6M� 8.48 4.67 819 77584 3369 0.66 60304
mSGB 7M� 7.48 3.67 835 78882 3349 0.65 61303
unstripped hMR 14.48 10.61 382 30447 3906 0.71 50994
hMR 1M� 13.48 9.61 746 76089 3512 0.68 57875
hMR 2M� 12.48 8.61 772 77824 3473 0.68 59396
hMR 3M� 11.48 7.61 793 78958 3438 0.67 60446
hMR 4M� 10.48 6.61 817 80299 3401 0.67 62519
hMR 5M� 9.48 5.61 835 80747 3370 0.67 63437
hMR 6M� 8.48 4.61 849 81012 3344 0.67 64148
hMR 7M� 7.48 3.61 856 81082 3333 0.67 64480
unstripped MCE 14.48 10.60 638 62253 3612 0.71 51306
MCE 1M� 13.48 9.60 755 77322 3506 0.68 58531
MCE 2M� 12.48 8.60 776 78384 3470 0.68 59869
MCE 3M� 11.48 7.60 797 79464 3435 0.67 60971
MCE 4M� 10.48 6.60 817 80274 3401 0.67 63087
MCE 5M� 9.48 5.60 836 80925 3369 0.67 63771
MCE 6M� 8.48 4.60 851 81234 3342 0.67 64513
MCE 7M� 7.48 3.60 858 81247 3329 0.67 64918

models are hotter than the reference model on reaching the pre-SN stage. In other words, the
(simplistic) introduction of an extreme mass loss event in the otherwise regular evolution of
the reference model populates the hot and bright portion of the HR diagram.

To explain the physical motivation for the post-stripping blueward evolution, I ran one of
the models stripped when the convective envelope reaches its maximum extent (MCE 7M�),
but this time without any wind mass loss after the stripping (i.e. η = 0). The evolutionary
tracks on the HR diagram for the two models stripped by 7M� at MCE (with and with-
out the post-stripping wind) are shown in Fig. 4.2, together with the reference model. The
model without post-stripping wind mass loss remains cooler than model MCE 7M�, but,
is hotter than the reference model when reaches the onset of core collapse. However, its
temperature rises above the temperature of the reference model only during very late stages
of the evolution. Therefore, the episodic mass loss event itself is not causing the blueward
evolution of the stripped models; the combination of the episodic mass loss event plus the
post-stripping wind mass loss drives it. The stripping event actually provokes an expan-
sion of the envelope (during the pseudo-evolution, not shown, cf. Tab. 4.1), and the stellar
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Table 4.2: Relative variations of the hydrogen burning power (WH), effective temperature
(Teff) and luminosity (L) during the stripping process. The relative variations are ∆x =
|xpre stripping−xpost stripping|

xpre stripping , for x = WH, Teff, and L, respectively.

Model ∆WmSGB
H ∆TmSGB

eff ∆LmSGB

mSGB 1M� 1.54% 63.54% 54.20%
mSGB 2M� 1.04% 63.94% 57.72%
mSGB 3M� 2.83% 64.31% 60.02%
mSGB 4M� 6.36% 64.69% 62.74%
mSGB 5M� 1.69% 64.69% 54.45%
mSGB 6M� 2.59% 65.02% 57.23%
mSGB 7M� 4.29% 65.23% 59.86%

Model ∆WhMR
H ∆ThMR

eff ∆LhMR

hMR 1M� 11.71% 10.09% 149.91%
hMR 2M� 14.29% 11.09% 155.60%
hMR 3M� 16.08% 11.98% 159.33%
hMR 4M� 19.61% 12.93% 163.73%
hMR 5M� 21.17% 13.72% 165.21%
hMR 6M� 22.38% 14.39% 166.08%
hMR 7M� 22.94% 14.67% 166.31%

Model ∆WMCE
H ∆TMCE

eff ∆LMCE

MCE 1M� 12.29% 2.93% 24.21%
MCE 2M� 14.57% 3.93% 25.91%
MCE 3M� 16.44% 4.90% 27.65%
MCE 4M� 20.04% 5.84% 28.95%
MCE 5M� 21.21% 6.73% 29.99%
MCE 6M� 22.47% 7.48% 30.49%
MCE 7M� 23.16% 7.83% 30.51%

envelope reaches low Teff and high L. The wind algorithm used after the episodic event is
the de Jager et al. rate, so after stripping, the wind is suddenly much stronger than before
(L increases, and Teff is either roughly the same or lower after the stripping), and it removes
more mass (compare Mstripped in Tab. 4.1 and Mpre−SN in Tab. 4.3), unveiling the inner (and
thus hotter) regions of the star, and (partially) driving the blueward evolution. The impul-
sive mass loss significantly reduces g ∝ M/R2 and thus strongly enhances the wind mass
loss3.

The post-stripping surface abundance of hydrogen Xs is another quantity of interest. Be-
fore the stripping event, the chemical composition in the outermost region of the star is
homogeneous. Since the mass is removed from the surface and never from as deep as the
hydrogen burning shell, the chemical composition of the surface is almost unaltered by in-
ternal mixing during the stripping, and a significant amount of hydrogen is left (Xs ∼ 0.7,
see Tab. 4.1). Small variations of Xs can be caused by the formation of deep convective layers
in the region above the hydrogen shell, where the chemical composition gradually changes
in a series of steps (cf. Fig. 3.13). Note that, until the stripping event, the reference model of

3However, the mass loss rate used does not depend explicitly on g.
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Figure 4.2: Evolutionary tracks on the HR diagram for the unstripped reference model (blue
curve), model MCE 7M� (pink curve), and the same stripped model re-run without the
wind mass loss (i.e. η = 0, red curve) after the stripping. Both stripped models start from
point A, that is the arrival point of the jump caused by the stripping. Initially both evolve
toward point B, i.e. toward lower luminosity. The pink curve (with wind mass loss), then,
proceeds toward C moving at constant luminosity toward higher Teff, before increasing L
and decreasing again Teff to reach D and ending its evolution in E. In contrast, the red curve
(without wind mass loss) moves from B to F increasing again L at roughly constant Teff, and
reach the onset of collapse in G. Summarizing, the stripped model with the post-stripping
wind (pink curve) follows the evolutionary path ABCDE, while the model without post
stripping wind follows the path ABFG.

the stripped series is identical to s15VdJNL 1.0 of the wind comparison study, whose Y pro-
file at TAMS and at the end of the hot evolutionary phase is plotted in Fig. 3.13. Therefore,
the mass loss events simulated here do not directly produce WR stars – which is not the aim
of the study – nor do they completely remove the hydrogen envelope of the star. To obtain
stars without hydrogen requires additional wind mass loss.

To summarize, the picture for the formation of completely hydrogen-free pre-SN struc-
tures investigated in this work is the following: an impulsive envelope-shedding event re-
moves the bulk (in terms of mass) of the envelope, and then the regular line-driven wind
finishes the job and (possibly) removes the surface hydrogen. This is not a result, but rather
the hypothesis adopted for these simulations, which are strongly limited both by hydrostatic
requirement of MESA and by our poor knowledge of the physics of these events.
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Table 4.3: Final mass Mpre−SN, hydrogen-rich mass, helium, carbon/oxygen and iron core

masses MHe, MCO, and MFe, respectively, in units of M�; compactness ξ
pre−SN
2.5 , radius R,

luminosity L, in solar units, Teff in units of 103 K at the onset of core collapse. The helium
(carbon/oxygen) core boundary is defined by the location where the hydrogen (helium)
abundance as a function of mass is the steepest. The iron core boundary is the first location
going inward where Ye < 0.49, see [102].

Model
Mpre−SN MH MHe MCO MFe

ξ
pre−SN
2.5

R L Teff
[M�] [M�] [M�] [M�] [M�] [R�] [L�] [103 K]

unstripped 12.28 7.18 5.10 3.27 1.51 0.103 1039 120309 3.337
mSGB 1M� 11.27 6.18 5.09 3.28 1.49 0.125 1031 121084 3.355
mSGB 2M� 10.25 5.16 5.09 3.26 1.49 0.142 1013 119370 3.373
mSGB 3M� 9.17 4.06 5.11 3.27 1.49 0.127 991 121536 3.425
mSGB 4M� 7.87 2.67 5.20 3.32 1.58 0.138 932 122270 3.537
mSGB 5M� 6.82 1.61 5.21 3.33 1.56 0.171 828 122984 3.759
mSGB 6M� 5.94 0.74 5.20 3.32 1.54 0.114 663 123258 4.204
mSGB 7M� 5.59 0.38 5.21 3.33 1.50 0.089 555 118763 4.553
hMR 1M� 11.27 6.18 5.09 3.28 1.49 0.125 1031 121084 3.355
hMR 2M� 10.25 5.16 5.09 3.26 1.49 0.142 1013 119370 3.373
hMR 3M� 9.17 4.06 5.11 3.27 1.49 0.127 991 121536 3.425
hMR 4M� 7.87 2.67 5.20 3.32 1.58 0.138 932 122270 3.537
hMR 5M� 6.87 1.68 5.19 3.32 1.53 0.118 843 122179 3.719
hMR 6M 5.96 0.77 5.18 3.31 1.58 0.122 676 122065 4.153
hMR 7M 5.52 0.32 5.21 3.30 1.60 0.110 551 122645 4.604
MCE 1M� 11.27 6.17 5.10 3.27 1.58 0.102 1032 118857 3.339
MCE 2M� 10.25 5.16 5.09 3.27 1.54 0.134 1016 120982 3.379
MCE 3M� 9.17 4.06 5.11 3.27 1.53 0.159 989 119197 3.413
MCE 4M� 7.88 2.69 5.19 3.32 1.58 0.130 932 122808 3.541
MCE 5M� 6.87 1.68 5.19 3.32 1.52 0.131 843 121709 3.715
MCE 6M� 5.96 0.78 5.18 3.31 1.55 0.153 675 122791 4.162
MCE 7M� 5.52 0.31 5.21 3.31 1.56 0.123 552 122631 4.602

4.3 Stripped Models at the Onset of Core Collapse

Table 4.3 summarizes some properties of the stripped models at the onset of core collapse
(see Eq. 1.9). These have been used as initial condition for the simulation of light curves
from stripped pre-SN stars in Morozova et al., submitted to ApJ, arXiv:1505.06746.

Figure 4.3 shows the density profiles of the stripped models. Not surprisingly, that of
the inner ∼ 1M� does not change when different amounts of mass are stripped at different
stages of the evolution. For all of the models, the central density at the onset of core col-
lapse is log10(ρ/[g cm−3]) ' 10. This can be explained by considering the structure of the
core when the envelope is removed (see Tab. 2.3). All the stripping points are during post-
hydrogen-core-burning epoch, so either the core is radiative (because it is inert and there is
no nuclear burning is below the hydrogen shell), or a radiative region exists between the
core and the removed outer envelope. The structure of the core is, thus, determined by the
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radiative temperature gradient,

dT
dr

∣∣∣
rad

= − 3
4acT3

κρL
4πr2 , (4.2)

or there is a region outside the core where this is true. This gradient does not depend on
the pressure at the outer boundary of the core, which is effectively the only thing changing
when parts of the envelope are removed (chemical mixing in the envelope is not strong
enough to significantly change κ). Thus, there is no significant thermal response of the core
to the mass loss event. The presence of a radiative layer “protects” the core from the mass
stripping, because all readjustments happens in the radiative layer. Moreover, the iron core
of a star at the pre-SN stage is always composed of relativistically degenerate electrons that
provide the bulk of the gas pressure, therefore, its EOS is a polytropic of index Γ = 4/3,

P ∝ ρΓ , (4.3)

where the proportionality constant depends only on the (Fermi-Dirac) statistical distribu-
tion that the electrons obey. There is no reason to expect variations in the structure of the
innermost core because of the stripping.

Furthermore, Fig. 4.3 shows that the amount of mass stripped strongly affects the density
profile in the mass shell 1.5 . m/M� . 3.5, corresponding roughly to the carbon-oxygen-
rich shell. The differences between models stripped by the same amount but at different
times are less pronounced. The differences in the density profiles arise during the post-
stripping evolution. The amount of mass that the shell(s) must support during the post-
stripping evolution is determined by the amount of mass removed in the stripping process.
Therefore the energy generation rate in shells required to sustain the remaining envelope,
the density structure, and final chemical composition of these shells, depends on the amount
of mass removed during the stripping event.

Interestingly, the mass interval where the models vary the most is also where the com-
pactness parameter ξ2.5 (see Eq. 3.1) is determined. Whether a star successfully explodes as
a result of core collapse, and (perhaps) whether a NS or BH is formed, is sensitive to the
value of ξ2.5 [16, 36, 89]. The removal of the hydrogen-rich envelope by some mechanism
during the life time of a massive star could influence the outcome of core collapse.

Finally, the structure of the partially stripped hydrogen-envelope at the time of core col-
lapse is insensitive to when the stripping occurred. As can be seen in Fig. 4.3, stars for which
the same amount of mass was removed have nearly identical density profiles in their outer
regions, irrespective of when the stripping occurs. Furthermore, the outermost (i.e. at larger
mass coordinate) density, ρsurf ' 10−9 g cm−3, and the helium core mass, MHe ' 5.1M�,
are similar for all the models (see Tab. 4.3). The density gradient in the envelope outside
the helium core is steeper for models with less massive envelopes (i.e. the most stripped
models).

Note that none of the stripped models reach the onset of core-collapse as WR stars. This
is because of the choice of the reference model MZAMS. The wind, for Mtot . 15M�, is not
strong enough to remove the remaining layer of hydrogen left after stripping. However,
the aim of this study is not to produce WR pre-SN structures, but rather to show that it is
possible to explore the effects on stellar evolution of events that strip a large fraction of the
hydrogen-rich envelope, even without a detailed, dynamical and self-consistent treatment
of the mass loss event itself. The procedure, described in §2.4.1, allows one to evolve the
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Figure 4.3: Density profiles of the stripped models at the pre-SN stage. Solid, dashed and dot
dashed curves represent the mSGB, hMR and MCE series respectively. The zoomed panel
focuses on the region where the most significant differences between the density profiles are,
i.e. 1.5M� . m . 3.5M� and 2 . log10(ρ/[g cm−3]) . 6. The vertical dot dashed lines mark
the edges of the (going inward) helium, carbon-oxygen and silicon core (the latter is defined
in analogy with Eq. 3.2, substituting the abundance of hydrogen X with that of oxygen,
X16O). The iron core mass, whose edge is defined where Ye < 0.495, [102], is MFe = 1.64M�.

star with the same parameters before and after the mass stripping event, resulting in a more
realistic simulation than an arbitrary increase of the wind efficiency η.

Therefore, the formation of WR pre-SN structures, i.e. the progenitors of type Ib/Ic core-
collapse SNe, could be explored with this procedure with a (initially) more massive reference
model4.

4However, for MZAMS & 20M� the treatment of near-to-super-Eddington radiation dominated envelopes
may be crucial, see also §1.3.1 and §2.1.3.
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CHAPTER 5

Discussion and Conclusion

Non esiste un piano che possa prevedere tutto. Altri solleveranno il capo, altri diserteranno. Il tempo
non cesserà di elargire sconfitte e vittorie a chi proseguirà la lotta. [...] Possano i giorni trascorrere

senza meta. Non si prosegua l’azione secondo un piano.
[L. Blisset, Q]

5.1 Context Summary

Computational studies in astrophysics require a large number of free parameters and sim-
plified – perhaps too much so – algorithms to represent specific phenomena occurring in
cosmic bodies. This reflects the intrinsic difficulties of their physical and self-consistent
modeling. In many cases, as studies of stellar evolution, the sensitivity to variations of the
unconstrained parameters, or to the use of different algorithms is not explored.

This thesis presents an extensive analysis of the treatment of mass loss in numerical sim-
ulations of massive star evolution using the open-source stellar evolution code MESA. It
aims at understanding systematic differences caused by the different algorithms available
in the literature. Mass loss remains the most uncertain element in the theoretical description
of the evolution of single1 massive stars [7], together with the uncertainties in the treatment
of convection and mixing that are present in the numerical modeling of stars of any initial
mass.

Massive stars, have three broad mass loss channels available in nature: (i) line (or dust)
driven stellar winds; (ii) impulsive events capable of removing a large fraction of the mass
in a very short time; and (iii) Roche lobe overflow (RLOF) in binary systems. Any mass
loss event happening on a timescale shorter than the thermal timescale or the dynamical
timescale is “impulsive”, i.e. the re-adjustment of the stellar structure cannot maintain the
thermal and hydrostatic equilibrium.

The high non-linearity of the dynamical equations of wind-like flows is an obstacle to the
finding of a self-consistent solution. A number of observational and theoretical clues points
to the existence of envelope shedding, impulsive, dynamical events (such as pulsational in-
stabilities, catastrophic eruptions, etc.). However, in stellar evolution modeling, little work
has yet been done to explore these phenomena. This is because of the technical and/or com-
putational difficulties (e.g. the complex geometry of these events) and our poor knowledge
of the physics underlying these envelope shedding events.

1i.e. that do not interact with the possibly present companion(s).
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This study is divided into two separate parts. One deals with the wind mass loss, com-
paring and contrasting the effects of different wind models on the stellar evolution. The
other part attempts a simplified, but astrophysically motivated, numerical experiment to sim-
ulate the effects of a very short timescale stripping of large fractions of the stellar envelope.

5.2 Wind Mass Loss

Mass loss is usually included in models using parametric algorithms. These are either semi-
empirical, or theoretical predictions based on stellar wind models. They cannot yet be de-
rived self-consistently from first principles. Most of these algorithms rely on an assumed ve-
locity structure v(r) to obtain the mass loss rate from the continuity equation, Ṁ = 4πr2ρv.
A breakdown of the assumptions behind this equation (e.g. because of the wind “clumpi-
ness” or non-sphericity) may invalidate the entire framework adopted to derive the mass
loss rate.

Virtually all massive stars live in multiple systems, and the effects of binarity on the
observed spectra are not well known (e.g. modification of the conditions in the outer portion
of the stars because of colliding winds, tidal-induced mixing phenomena, etc.) and this work
treats only winds of single stars. However, all the wind mass loss algorithms derived from
observations may suffer from systematic errors because of the effects of the companion(s).

Many commonly employed algorithms for massive stars have not been examined in de-
tail regarding understanding and pinpointing in a systematic way the differences in the
resulting stellar structures (see e.g. [45]).

The wind mass loss study aims to show and understand these systematic differences. I
varied two aspects: the wind mass loss rate algorithms, which provide a mass loss rate as a
function of some stellar parameters, Ṁ ≡ Ṁ(L, R, Teff, Z, ...); and the efficiency factor η with
which Ṁ is scaled.

The choice of the stellar variables used to express Ṁ has a certain degree of freedom:
different algorithms chose different variables, and these may often not be independent (e.g.
M and L) and/or they do not form a complete set that characterizes uniquely the outflow.
Such a complete set may not even exist, since mass loss rate is determined by the micro-
physics of process(es) driving the wind, that may not be uniquely determined even if all the
macroscopic stellar properties are specified. In other words, there could be a degeneracy
that prevents to express the wind mass loss rate determined by micro-physical processes
only with macro-physical variables. The dependence Ṁ ≡ Ṁ(L, R, Teff, Z, ...) is obtained by
fitting observed or synthetic data, but there is no theoretical justification derived from first
principles to insure that the coefficients obtained with these fit procedures are, or should be,
constants. Studies that vary separately each single coefficient in the mass loss rate formulae
should be encouraged.

The efficiency factor η is a completely free parameter. Many authors have used η � 1
to enhance mass loss, with the aim of reproducing the total mass lost (including mass lost
during non-wind and possibly non-radiatively-driven phenomena), e.g. [46]. Others (e.g. [7,
49] and references therein) suggest using η < 1, because the commonly adopted wind rates
assume homogeneity, that is likely not correct. Observations indicate that winds, instead,
have over-dense clumps of matter, that provide the bulk of the opacity, absorb most of the
photons and create the spectral features, from which the wind mass loss rate is inferred. The
average density of the wind is likely much smaller than the density of these clumps, and this
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can produce an overestimation of the mass loss rate by factors between 2 to 10. In principle,
if the formation of clumps is very efficient and their opacity is very large, they could cause
a larger average mass loss rate. The lack of a physical basis for η must be emphasized.

I studied twelve different algorithms, obtained combining two different mass loss rates
for hot stars (Vink et al. and Kudritzki et al.), three for cool stars (de Jager et al., Nieuwen-
huijzen et al. and van Loon et al.) and two for WR stars (Hamann et al. and Nugis &
Lamers). I used three efficiencies η = 0.1, 0.33, 1.0; following the suggestions of [7]. I
compared these algorithms in the evolution of non-rotating stars of four different initial
masses (MZAMS = {15, 20, 25, 30}M�) at solar metallicity. The use of a hydrostatic stellar
evolution code to carry out the comparison is justified as long as the characteristic time for
mass loss does not exceed the timescale on which thermal and hydrostatic equilibrium are
achieved. I carried out extensive work to properly resolve in both space and time these sim-
ulations, at least until mass loss is on in the simulations (see also §B.3.3). The details of the
setup for these simulations are described in §2.3.

The comparison shows that the differences in the models increases with increasing MZAMS,
and that they are particularly pronounced during the cool and giant phases, i.e. the mass loss
rate is less certain when it is the largest. The use of different algorithms yields qualitative
differences in the predicted evolutionary tracks, although hard to test with observations
because of the large degeneracy with other free parameters involved in the simulation of
massive stars (e.g. αmlt, overshooting, etc.), see e.g. §3.2.

More specifically, the Vink et al. rate for the hot phase of evolution produces a lower
total mass at the end of this phase (i.e. higher average mass loss rate), because of its explicit
treatment of the wind driving when iron starts recombining in the envelope. This influences
the dimensions of the helium core, and triggers blue-loops in the MZAMS = 15M� models.
The Kudritzki et al. rate causes unusual and distinctive “loop-like” features toward the end
of the main sequence of MZAMS = 25M� and 30M� stars. I discuss these in detail in §3.2.

Two of the cool mass loss rates compared in this study, de Jager et al. and Nieuwenhuijzen
et al. are nearly identical, yet, I found a large difference comparing them to the van Loon et
al. algorithm. The van Loon et al. algorithm yields a much larger mass loss rate, producing
stars with a very different outer structure and its mass loss rate can be so high that it drives
late blueward evolution (by revealing hotter and deeper layers of the star), that does not
happen when using the other cool wind algorithms. This is because the van Loon et al. rate
assumes the formation of dust in the extended stellar envelopes, which is more effective
than metal lines in driving the wind.

Out of the 144 models computed, only eight reach the WR stage: those using the combi-
nation of the Kudritzki et al. and de Jager et al. or Nieuwenhuijzen et al. rates with η = 1.0.
The small number of WR stars in this grid does not rule out the wind overestimation: many
channels for the formation of WR (other than wind mass loss) exists and may dominate in
nature. The highest MZAMS considered here (30M�) is still at the lower end of the mass
range for the in scenario formation of WR stars from the modeling of single isolated progen-
itors. The Hamann et al. mass loss rate is much higher than the Nugis & Lamers rate, for
the luminosity compared, but the amount of mass lost during the WR stage is only a few
percent of the total mass in each case. Note also that the final radii of the WR models in my
grid are extremely large (R ∼ 700R�), however, this is caused by the fact that MESA does
not compute the spectral distribution of the luminosity.

Mass loss from stellar winds also influences the structure (e.g. compactness parameter)
of the stellar core at the pre-SN stage, thus playing a role in determining the “explodability”
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of the star at the end of its life. It creates small variations in the stellar core structure during
earlier stages, that then may be amplified by the subsequent evolution. I was not able to
disentangle the effects of mass loss from the effects of changing the spatial discretization
on the compactness of the core, because of difficulties encountered in obtaining properly
resolved core structures in late stages (namely, neon and oxygen burning, i.e. after mass loss
is shut down for computational reasons, see also §B.3.3),

Note that different wind mass loss algorithms predict different ejecta mass, stellar radii
and effective temperature. Therefore, each simulation produces a different environment
for the micro-physical processes determining dust formation and composition, both dur-
ing the stellar life and at its explosive death. This could in principle provide observational
signatures pointing to certain mass loss algorithms or ruling out others. The caveat is the
degeneracy of wind signatures with other (poorly constrained) phenomena in the evolution
of massive stars. Comparing stellar models computed with different algorithms to obser-
vations might also provide insight on when the parameters entering in the mass loss algo-
rithms are not constant as assumed.

The main point to keep in mind is that the commonly used wind algorithms are not equiv-
alent to each other, neither from the theoretical point of view because of the different choices
of the stellar parameters to express Ṁ, nor from the stellar evolution point of view because
they cause significantly different evolutionary tracks. Although very challenging, the ob-
servational signature of different mass loss rates could be detected. Different algorithms
produce different conditions in the outer regions of the stars in each evolutionary stage,
which in turn determine the characteristics of the circumstellar mass, chemical composition,
dust fraction and properties.

5.3 Envelope Shedding Events

Including non-wind mass loss in evolutionary computations is both very challenging (be-
cause of technical limitations and uncertainties surrounding the physical scenario) and highly
needed. This is especially true if the winds are observationally overestimated; then non-
wind mass loss mechanisms are required during the evolution of most of the progenitors of
hydrogen-poor core-collapse SNe (e.g. type IIb/Ib/Ic). Among the proposed non-wind phe-
nomena are pulsational instabilities, eruptive events of yet unknown trigger, such as LBVs
outflows. Another, perhaps dominant, mechanism is RLOF in binaries, that may become
dynamically unstable under certain circumstances. It is possible that impulsive phenom-
ena strip away most but not all the hydrogen-rich envelope, and regular line driven winds
remove the remaining portion.

Given the lacunae regarding the physics of any non-wind mass loss event, I used a very
simplified approach to perform a sensitivity study by removing (stripping away) several
portions of the envelope at different times of the RSG evolution of a 15M� star. This ap-
proach is still strongly limited by the (global) hydrostatic equilibrium condition of the MESA
code, and the timing and amount of mass lost in the stripping are specified by hand.

I chose three different epochs as the stripping stages (middle of the subgiant branch,
when half of maximum radius is reached, and when the convective envelope reaches its
maximum extent), to explore the sensitivity of the remaining structure to the moment of the
stripping. I chose these three different moments since the envelope structure is different at
each one of these, however, they are quite close in time (∼ 104 years) compared to the stellar
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lifetime for the unstripped reference model (∼ 14× 106 years), so no significant difference
is found changing the stripping point.

The innermost core is unaffected by the envelope stripping process, while the onion-skin
structure of the shells changes, removing different portions of the envelope, but indepen-
dent of when stripping. The helium core mass and structure is roughly the same for all
stripped models (since it is almost determined before the stripping event), and the outer-
most density value is roughly ρ ∼ 109 g cm3 for all of them. However, the amount of mass
between the outer boundary of the helium core and the surface is very different in models
stripped by different amounts, therefore the density gradient dρ/dm depends on the amount
of mass removed. The effects on the light curve produced by the explosion of such models
are studied in a forthcoming paper (Morozova et al., submitted to ApJ, arXiv:1505.06746).

None of the stripped models is a WR star at the pre-SN stage. This is because of the
combination of two reasons: (i) even in the most-stripped models, I left a layer of hydrogen-
rich material above the hydrogen burning shell. This layer cannot be removed without
violating the hydrostatic equilibrium requirement, since it is the one to re-adjust (on its local
thermal timescale) to the mass stripping. (ii) the initial mass is only 15M�, therefore the
post-stripping wind is not strong enough to remove the remaining hydrogen-rich mass.

The most important result of this sensitivity study is that the combination of impulsive
mass loss events with the post-stripping stellar winds populates the hot and luminous por-
tion of the HR diagram. This indicates that impulsive mass loss events might play a role in
the solution of the so-called “Red Super Giant problem”, [29].

Although the mass stripping algorithm presented here is not physically self-consistent,
and cannot capture the details of the envelope shedding event, nor allow its investigation,
it is an improved way to simulate stripped pre-SN structures. Previous studies removed
mass by enhancing the winds with η � 1, neglecting the fundamental physical differences
between radiatively driven winds and impulsive events. The procedure presented here per-
mits to evolve the star with the same set of parameters before and after the stripping, ap-
proaching more closely the evolution of real stars.

5.4 Directions for Further Work

The philosophy underlying this study is to show that widely used assumptions (and, there-
fore, algorithms) in stellar evolution calculations should not be completely trusted, as it is –
maybe too often – done. The understanding of the physics in stellar environments (and of all
other astrophysical phenomena depending on stellar astrophysics, such as galactic chemical
evolution) can progress only if the weak points of the current paradigm are stressed, un-
derlined, and carefully explored and understood. This requires the expansion of the kind
of study performed here on the mass loss (and specifically on the wind algorithms) to the
entire set of parameters and assumptions commonly made to carry out simulations of stellar
evolution. In principle, this could provide larger sets of models to compare to observations
and, hopefully, better constrain the uncertainties on the algorithms varied.

For these purposes, MESA is an efficient and easy to customize tool. However, it can-
not be used naively: the MESA code rarely crashes, even when the parameters used pro-
duce unphysical situations. Quite often MESA finds solutions that do not have any physical
meaning, because the settings adopted violate some of the assumptions on which the code
(and more in general, stellar evolution theory) is founded. The careful and detailed analysis
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of all the aspects of the solution found, including those considered secondary, is mandatory.
More details of this aspect are discussed in §B.

The study presented here on the sensitivity of massive star evolution to different mass
loss algorithms should be extended to a broader initial mass and metallicity range. The
threshold to switch from one rate to another should also be varied, to check whether this
significantly influences the results. Ultimately, such threshold should disappear from stellar
evolution codes, as they do not correspond to true, physical discontinuities in the evolution
of real stars.

On the other hand, a better connection with observations is needed, to use actual data for
constraining the mass loss algorithms used and better understand the underlying physics.
For this, it would be very helpful to produce synthetic spectra of the simulated stars in each
phase of their evolution, to have quantities which may be directly compared with observed
stars. The role of binarity deserves better attention in modeling, and its impact on the ob-
servation should be better constrained.

The number of free parameters available in stellar evolution codes (e.g. the wind effi-
ciency η) permit the reproduction of a large variety of observed and/or inferred phenomena
without improving the knowledge of the basic physical mechanisms involved. An example
of this is the possibility of simulating the total amount of mass lost by a massive star during
its entire evolution (possibly experiencing impulsive mass loss events) just by using η � 1.
This approach should be avoided, and instead more careful and physically sound simula-
tions should be carried out. In fact, a large enhancement of the wind mass loss could in prin-
ciple reduce the mass loss timescale, and if this drops below the (local) thermal timescale,
the assumption of thermal equilibrium used in stellar evolution calculations may break.

The stripping procedure adopted in this work is far from being realistic. However, even
without the inclusion of hydrodynamics, and without a physical picture derived from first
principles of what could trigger eruptive mass loss events, it allows one to study the change
in the stellar structure resulting from an artificial short and impulsive mass loss event. Much
more work is need in this direction: if the winds cannot remove the entire hydrogen enve-
lope of massive stars, then there is a need to improve the understanding of how stripped
pre-SN structures forms in nature. In the very end, this will require the inclusion of multi-
dimensional hydrodynamics at least for the envelope shedding phase.
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MESA parameters files and customized routines

An algorithm must be seen to be believed.
[D. Knuth, The Art of Computer Programming – Fundamental Algorithms]

A.1 The Inlist Parameters Files

To run a simulation with MESA the parameters can be set in multiple inlist files, the last
loaded overwrites the parameters in common with the previous inlists. In a common
situation, the directory in which the simulation is run contains the main inlist, which can
redirect to (multiple) secondary inlist(s), each dealing with a specific subset of parameters.

A.1.1 inlists for the Systematic Comparison of Wind Mass Loss

The MESA parameter file used for the systematic comparison of wind algorithms is the
same for all runs. First the main inlist loads the default parameters1 for massive stars
(inlist massive defaults), and then it loads the customized set of parameters, overwrit-
ing the default in case of conflict. I set Z base=0.019 in the inlist massive defaults. The
default set of parameters is listed in the following and it is the same for all runs. Only the
MASS and ETA string must be substituted with the MZAMS value (in units of M�) and the
efficiency η wanted.

! inlist_project

&star job

mesa_dir = ’’ ! empty string defaults to environment variable MESA_DIR

history_columns_file = ’./history_columns.list’ ! if null string, use

default.

profile_columns_file = ’./profile_columns.list’ ! if null string, use

default.

! show_log_description_at_start = .true.

show_net_species_info = .true.

1These may depend on the MESA release version, the released used for this work is 6794.
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show_net_reactions_info = .true.

create_pre_main_sequence_model = .false.

change_net = .true.
new_net_name = ’approx21.net’

set_rates_preference = .true. ! for use by net + rates modules

new_rates_preference = 2 ! only used if set_rates_preference is true

! 1 = NACRE rates -- this is the default

! 2 = jina reaclib rates

eos_file_prefix = ’mesa’

kappa_file_prefix = ’gs98’

set_initial_age = .true.
initial_age = 0 ! in years

set_initial_model_number = .true.
initial_model_number = 0

!SOLAR CHEMICAL COMPOSITION

change_initial_Z = .true.
new_Z = 0.019d0

change_initial_Y = .true.
new_Y=0.27

save_photo_when_terminate = .true.
pause_before_terminate = .false.
pgstar_flag = .false.

/ !end of star_job

&controls

!avoid MLT++ oscillations

which_atm_option = ’Eddington_grey’

which_atm_off_table_option = ’grey_and_kap’

Pextra_factor = 1

report_why_dt_limits = .true.
report_all_dt_limits = .true.

! starting specifications

initial_mass = MASS
!solar chemical composition

initial_Z = 0.02

!initial_Y = 0.27
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!Mass Loss

use_other_wind = .true.
RGB_wind_scheme = ’other’

AGB_wind_scheme = ’other’

!hot wind efficiency

x_ctrl(1) = ETA
!cool wind efficiency

x_ctrl(2) = ETA
!WR wind efficiency

x_ctrl(3) = ETA

! when to stop

fe_core_infall_limit = 1d8

!the real stopping criterion is set in the run_star_extras.f

!Resolution

mesh_delta_coeff_for_highT = 1.0

logT_max_for_standard_mesh_delta_coeff = 9.0

logT_min_for_highT_mesh_delta_coeff = 9.5

max_allowed_nz=30000

varcontrol_target = 1d-4

mesh_delta_coeff = 1.0

mesh_max_allowed_ratio=2.5

min_timestep_limit = 1d-12 !in sec

!Mesh refinement (ready to push the evolution pass O depletion)

mesh_dlog_pp_dlogP_extra = 0.15

mesh_dlog_cno_dlogP_extra = 0.15

mesh_dlog_3alf_dlogP_extra = 0.15

mesh_dlog_burn_c_dlogP_extra = 0.15

mesh_dlog_burn_n_dlogP_extra = 0.15

mesh_dlog_burn_o_dlogP_extra = 0.15

mesh_dlog_burn_ne_dlogP_extra = 0.15

mesh_dlog_burn_na_dlogP_extra = 0.15

mesh_dlog_burn_mg_dlogP_extra = 0.15

mesh_dlog_cc_dlogP_extra = 0.15

mesh_dlog_co_dlogP_extra = 0.15

mesh_dlog_oo_dlogP_extra = 0.15

mesh_dlog_burn_si_dlogP_extra = 0.15

mesh_dlog_burn_s_dlogP_extra = 0.15

mesh_dlog_burn_ar_dlogP_extra = 0.15

mesh_dlog_burn_ca_dlogP_extra = 0.15

mesh_dlog_burn_ti_dlogP_extra = 0.15

mesh_dlog_burn_cr_dlogP_extra = 0.15

mesh_dlog_burn_fe_dlogP_extra = 0.15

mesh_dlog_pnhe4_dlogP_extra = 0.15
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mesh_dlog_other_dlogP_extra = 0.15

mesh_dlog_photo_dlogP_extra = 0.15

!first 2 functions set in inlist_massive_defaults

xa_function_species(3) = ’c12’

xa_function_weight(3) = 20

xa_function_param(3) = 1d-2

xa_function_species(4) = ’o16’

xa_function_weight(4) = 20

xa_function_param(4) = 1d-2

xa_function_species(5) = ’ne20’

xa_function_weight(5) = 20

xa_function_param(5) = 1d-2

!The following will be useless for the

!wind study, I don’t go that far in the evolution

xa_function_species(6) = ’si28’

xa_function_weight(6) = 20

xa_function_param(6) = 1d-2

xa_function_species(7) = ’s32’

xa_function_weight(7) = 20

xa_function_param(7) = 1d-2

xa_function_species(8) = ’fe54’

xa_function_weight(8) = 20

xa_function_param(8) = 1d-2

xa_function_species(9) = ’fe56’

xa_function_weight(9) = 20

xa_function_param(9) = 1d-2

!increase the resolution at the surface (avoid "fake-WR")

T_function2_weight = 110

! output to files and terminal

photostep = 50

profile_interval = 10

history_interval = 1

terminal_interval = 10

write_header_frequency = 1

max_num_profile_models = 1000

mixing_length_alpha = 2.0

MLT_option = ’Henyey’
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allow_semiconvective_mixing = .true.
alpha_semiconvection = 0.1

overshoot_f_above_nonburn = 0.025

overshoot_f_above_burn_h = 0.025

overshoot_f_above_burn_he = 0.025

overshoot_f_above_burn_z = 0.025

overshoot_f_below_nonburn = 0.025

overshoot_f_below_burn_h = 0.025

overshoot_f_below_burn_he = 0.025

overshoot_f_below_burn_z = 0.025

/

A.1.2 inlist for the Simplified Envelope Shedding Mass Loss Events

The inlist parameter files for each stripped mass model are all identical except for NEW M,
which is set to a specific value in units of M� for each run, and MODEL TO LOAD which
contains the path to the model of the reference run saved at the stripping point.

! inlist_project

! contains the parameters controlling this job

! for the sake of future readers of this (yourself included),

! ONLY include the controls you are actually using.

! DO NOT include all of the other controls that

! simply have their default values.

!This inlist has been created merging "inlist_massive_defaults" and

"inlist_massive_15M_z1.9m2"

&star job

mesa_dir = ’’ ! empty string defaults to environment variable MESA_DIR

history_columns_file = ’./history_columns.list’ ! if null string, use

default.

profile_columns_file = ’./profile_columns.list’ ! if null string, use

default.

show_log_description_at_start = .true.
show_net_species_info = .true.

! show_net_reactions_info = .true.

create_pre_main_sequence_model = .false.
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change_net = .true.
new_net_name = ’approx21.net’

set_rates_preference = .true. ! for use by net + rates modules

new_rates_preference = 1 ! only used if set_rates_preference is true

! 1 = NACRE rates -- this is the default

! 2 = jina reaclib rates

eos_file_prefix = ’mesa’

kappa_file_prefix = ’gs98’

set_initial_age = .false.
set_initial_model_number=.false.

load_saved_model = .true.
saved_model_name = MODEL TO LOAD

relax_initial_mass = .true. ! gradually change total mass by a wind

new_mass = NEW M !mass of the He core of the progenitor

!lg_max_abs_mdot = 2

write_profile_when_terminate = .true. ! write to a given name

filename_for_profile_when_terminate = ’onset_of_cc_stripped_1M.data’

save_photo_when_terminate = .true.
pause_before_terminate = .false.

! pgstar_flag =.true.

pgstar_flag = .false.

/ !end of star_job

&controls

! starting specifications

initial_mass = 15 ! in Msun units

!solar chemical composition

initial_Z = 0.02

!initial_Y = 0.27

! high center T limit to avoid negative mass fractions

sig_min_factor_for_high_Tcenter = 0.01

! inactive when >= 1d0

! if Tcenter >= Tcenter_min_for_sig_min_factor_full_on,

! then okay to reduce sig by as much as this factor

! as needed to prevent causing negative abundances

Tcenter_min_for_sig_min_factor_full_on = 2d9

! if Tcenter >= this, factor = sig_min_factor_for_neg_abundances

! this should be > Tcenter_max_for_sig_min_factor_full_off.

Tcenter_max_for_sig_min_factor_full_off = 1d9
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! if Tcenter <= this, factor = 1, so has no effect

! this should be < Tcenter_min_for_sig_min_factor_full_on.

! for T > full_off and < full_on, factor changes linearly with Tcenter

min_years_dt_for_redo_mdot = 1 ! experimental

num_trace_history_values = 0

trace_history_value_name(1) = ’surf_avg_v_div_v_crit’

! output to files and terminal

photostep = 10

profile_interval = 10

history_interval = 1

terminal_interval = 10

write_header_frequency = 1

max_num_profile_models = 100

velocity_logT_lower_bound = 8

max_dt_yrs_for_velocity_logT_lower_bound = 0.1

okay_to_reduce_gradT_excess = .true.

gradT_excess_f1 = 1d-4

gradT_excess_f2 = 1d-2

gradT_excess_age_fraction = 0.9d0

gradT_excess_lambda1 = 1.0

gradT_excess_beta1 = 0.35

gradT_excess_lambda2 = 0.5

gradT_excess_beta2 = 0.25

gradT_excess_dlambda = 0.1

gradT_excess_dbeta = 0.1

!Mass Loss

use_other_wind = .true.
RGB_wind_scheme = ’other’

AGB_wind_scheme = ’other’

Dutch_wind_eta = 1.0

use_Type2_opacities = .true.
Zbase = 0.02

xa_scale = 1d-5

newton_itermin = 2

mixing_length_alpha = 2.0
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MLT_option = ’Henyey’

allow_semiconvective_mixing = .true.
alpha_semiconvection = 0.1

! allow_thermohaline_mixing = .false.

! thermo_haline_coeff = 2

! thermohaline_option = ’Kippenhahn’

overshoot_f_above_nonburn = 0.025

overshoot_f_above_burn_h = 0.025

overshoot_f_above_burn_he = 0.025

overshoot_f_above_burn_z = 0.025

overshoot_f_below_nonburn = 0.025

overshoot_f_below_burn_h = 0.025

overshoot_f_below_burn_he = 0.025

overshoot_f_below_burn_z = 0.025

set_min_D_mix = .true. !D_mix is the diffusion coefficient for

mixing of material

min_D_mix = 1d3 ! D_mix will be at least this large

min_center_Ye_for_min_D_mix = 0 !D_mix is used only for Ye>= than this

screening_mode = ’extended’

max_iter_for_resid_tol1 = 3 !in the first max_iter_for_resid_tol1

tol_residual_norm1 = 1d-5 !the maximum difference between lhs and rhs

of the equation

tol_max_residual1 = 1d-2 !is determined by this parameters

max_iter_for_resid_tol2 = 12 !after the first max_iter_for_resid_tol1

iterations

tol_residual_norm2 = 1d99 !use this instead

tol_max_residual2 = 1d99

delta_lgL_He_limit = 0.1 ! limit for magnitude of change in lgL_He

dX_nuc_drop_limit = 1d-3

delta_Ye_highT_limit = 1d-4

dX_nuc_drop_max_A_limit = 52

dX_nuc_drop_min_X_limit = 1d-3

dX_nuc_drop_hard_limit = 1d99

delta_lgTeff_limit = 0.5

delta_lgL_limit = 0.5

delta_lgRho_cntr_limit = 0.02

xa_function_species(1) = ’h1’
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xa_function_weight(1) = 70

xa_function_param(1) = 1d-3

xa_function_species(2) = ’he4’

xa_function_weight(2) = 70

xa_function_param(2) = 1d-3

max_allowed_nz = 16000

mesh_delta_coeff_for_highT = 1.5

logT_max_for_standard_mesh_delta_coeff = 9.0

logT_min_for_highT_mesh_delta_coeff = 9.5

varcontrol_target = 1d-3

mesh_delta_coeff= 1.0

mesh_max_allowed_ratio=2.5

min_timestep_limit = 1d-8 !in sec

! when to stop

fe_core_infall_limit = 1d8

/

The reference run has an analogous inlist, except for the stopping criterion. The stop-
ping criteria for the mSGB series,

Teff_lower_limit = 1d4

and for the hMR series,

photosphere_r_upper_limit = 375 !in units of Rsun

are set directly in the controls namelist of the unstripped reference model inlist. MESA
does not provide settings to control the run depending on the extension of the convec-
tive envelope, therefore the stopping criterion for the MCE series is implemented in the
run star extras.f, see §A.2.14.

Moreover, in the reference run star job namelist, the following instructions are modi-
fied:

set_initial_age = .true.
initial_age = 0 ! in years

set_initial_model_number = .true.
initial_model_number = 0

!SOLAR CHEMICAL COMPOSITION

change_initial_Z = .true.
new_Z = 0.019d0

change_initial_Y = .true.
new_Y=0.27

Finally, the relax initial mass is set to .false. (i.e. it is omitted from the inlist to let
MESA use the default).
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A.2 Routines for the run star extras.f

In this section, I report the routines implemented for this study. §A.2.1–A.2.11 contain the
mass loss routines used for the systematic comparison of wind algorithms, while §A.2.13
contains the timestep control routine, and the routines used to stop the models at the desired
condition.

The chem def “public” module is loaded outside the implemented routine, to be able to
access the variables it defines (e.g. the index of each element in the nuclear reaction network,
ih1, ihe4, ic12, etc.) without reloading it module multiple times. This is done by including
at the very beginning of the module run star extras the following line:

use chem_def !to be able to call isotopes

These routines must be copied in the run star extras.f to be used, following the guide-
lines of http://mesa.sourceforge.net/run_star_extras.html#toc-3. Note in particular
that to instruct MESA to use the custom mass loss routines, the ’other’ wind scheme must
be specified in the inlist, and the pointer other wind must be directed to the mass loss
routine name in the run star extras.f subroutine extras controls, i.e. the latter must
contain the line

s% other_wind => Dutch_tanh_intrp_wind

where Dutch tanh intrp windmust be substitued by the appropriate routine name. Note
also that any modification to the run star extras.f requires a compilation (of the local
work directory) to be effective.

A.2.1 Vink et al., de Jager et al., Nugis & Lamers – VdJNL

subroutine Dutch_tanh_intrp_wind(id, Lsurf, Msurf, Rsurf, Tsurf, w,

ierr)

use crlibm_lib

type (star_info), pointer :: s

integer, intent(in) :: id

real(dp), intent(in) :: Lsurf, Msurf, Rsurf, Tsurf ! surface values

(cgs)

real(dp), intent(out) :: w ! wind in units of Msun/year (value is >= 0)

integer, intent(out) :: ierr

real(dp) :: L1, M1, R1, T1, xsurf, etaWR, etaHOT, etaCOOL, Zsolar, Y, Z

real(dp) :: log10w, w1, w2, T_high, T_low, alfa

call get_star_ptr(id,s,ierr)

w = 0

ierr = 0

L1 = Lsurf

M1 = Msurf

R1 = Rsurf

T1 = Tsurf

Zsolar = 0.019

!I use the same factor everywhere

etaHOT = s% x_ctrl(1)
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etaCOOL = s% x_ctrl(2)

etaWR = s% x_ctrl(3)

!Assumes the use of approx21.net

xsurf = s%xa(s% net_iso(iprot), 1)+ s%xa(s% net_iso(ih1), 1) !H mass

fraction of the outermost cell, species 1 being neutrons

Y = s% xa(s%net_iso(ihe3),1) + s% xa(s%net_iso(ihe4),1)

Z = 1 - Y -xsurf

T_high = 11000d0

T_low = 10000d0

if (xsurf .GE. 0.4d0) then
if (T1 <= T_low) then

print *, ’using: de_Jager, eta=’, etaCOOL

call eval_de_Jager_wind(w)

w = w * etaCOOL

else if (T1 >= T_high) then
print *, ’using: Vink_tanh, eta=’, etaHOT

call eval_tanh_intrp_vink_wind(w)

w = w * etaHOT

else ! transition

print *, ’interpolating de Jager and Vink_tanh, eta=’, etaHOT

call eval_de_Jager_wind(w1)

call eval_tanh_intrp_vink_wind(w2)

alfa = (T1 - T_low)/(T_high - T_low)

w = (1-alfa)*w1 + alfa*w2

w = w * etaHOT

end if
else !means it’s a WR star

print *, ’using: N&L, eta=’, etaWR

w = 1d-11 * pow_cr(L1/Lsun,1.29d0) * pow_cr(Y,1.7d0) * sqrt(Z)
w = w * etaWR

end if

contains

subroutine eval_de_Jager_wind(w)

! de Jager, C., Nieuwenhuijzen, H., & van der Hucht, K. A. 1988, A&AS, 72,

259.

real(dp), intent(out) :: w

real(dp) :: log10w

include ’formats’

log10w = 1.769d0*log10_cr(L1/Lsun) - 1.676d0*log10_cr(T1) - 8.158d0

w = exp10_cr(log10w)

end subroutine eval_de_Jager_wind

subroutine eval_tanh_intrp_vink_wind(w)

real(dp), intent(inout) :: w

real(dp) :: alfa, w1, w2, w_c, w_h, Teff_jump, logMdot, dT,

vinf_div_vesc
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w = 0

if (T1 > 27500d0) then
vinf_div_vesc = 2.6d0 ! this is the hot side galactic value

vinf_div_vesc = vinf_div_vesc*pow_cr(Z/Zsolar,0.13d0) !

corrected for Z

logMdot = &
- 6.697d0 &
+ 2.194d0*log10_cr(L1/Lsun/1d5) &
- 1.313d0*log10_cr(M1/Msun/30) &
- 1.226d0*log10_cr(vinf_div_vesc/2d0) &
+ 0.933d0*log10_cr(T1/4d4) &
- 10.92d0*pow2(log10_cr(T1/4d4)) &
+ 0.85d0*log10_cr(Z/Zsolar)

w1 = exp10_cr(logMdot)

w = w1

else if (T1 < 22500d0) then
vinf_div_vesc = 1.3d0 ! this is the cool side galactic value

vinf_div_vesc = vinf_div_vesc*pow_cr(Z/Zsolar,0.13d0) ! corrected

for Z

logMdot = &
- 6.688d0 &
+ 2.210d0*log10_cr(L1/Lsun/1d5) &
- 1.339d0*log10_cr(M1/Msun/30) &
- 1.601d0*log10_cr(vinf_div_vesc/2d0) &
+ 1.07d0*log10_cr(T1/2d4) &
+ 0.85d0*log10_cr(Z/Zsolar)

w2 = exp10_cr(logMdot)

w = w2

else ! use Vink et al 2001, eqns 14 and 15 to set "jump"

temperature

Teff_jump = 1d3*(61.2d0 + 2.59d0*(-13.636d0 +

0.889d0*log10_cr(Z/Zsolar)))

dT = 100d0

print *, ’Teff_jump[K]’, Teff_jump

! first evaluate the mass loss rate one would have if T = 27500, all

rest held constant

vinf_div_vesc = 2.6d0 ! this is the hot side galactic value

vinf_div_vesc = vinf_div_vesc*pow_cr(Z/Zsolar,0.13d0) !

corrected for Z

w_h = &
- 6.697d0 &
+ 2.194d0*log10_cr(L1/Lsun/1d5) &
- 1.313d0*log10_cr(M1/Msun/30) &
- 1.226d0*log10_cr(vinf_div_vesc/2d0) &
+ 0.933d0*log10_cr(27500/4d4) &
- 10.92d0*pow2(log10_cr(27500/4d4)) &
+ 0.85d0*log10_cr(Z/Zsolar)
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w_h = exp10_cr(w_h)

!then evaluate the mass loss rate one would have if T= 22500,

all rest held constant

vinf_div_vesc = 1.3d0 ! this is the cool side galactic value

vinf_div_vesc = vinf_div_vesc*pow_cr(Z/Zsolar,0.13d0) !

corrected for Z

w_c = &
- 6.688d0 &
+ 2.210d0*log10_cr(L1/Lsun/1d5) &
- 1.339d0*log10_cr(M1/Msun/30) &
- 1.601d0*log10_cr(vinf_div_vesc/2d0) &
+ 1.07d0*log10_cr(22500/2d4) &
+ 0.85d0*log10_cr(Z/Zsolar)

w_c = exp10_cr(w_c)

!then interpolate between this two values

w = ((w_h - w_c)/2)*TANH((T1-Teff_jump)/(1d0*dT)) &
+(w_c+w_h)/2

end if

end subroutine eval_tanh_intrp_vink_wind

end subroutine Dutch_tanh_intrp_wind

A.2.2 Vink et al.,de Jager et al., Hamann et al. – VdJH

subroutine VdJNL_wind(id, Lsurf, Msurf, Rsurf, Tsurf, w, ierr)

use crlibm_lib

type (star_info), pointer :: s

integer, intent(in) :: id

real(dp), intent(in) :: Lsurf, Msurf, Rsurf, Tsurf ! surface values

(cgs)

! NOTE: surface is outermost cell. not necessarily at photosphere.

! NOTE: don’t assume that vars are set at this point.

! so if you want values other than those given as args,

! you should use values from s% xh(:,:) and s% xa(:,:) only.

! rather than things like s% Teff or s% lnT(:) which have not been

set yet.

real(dp), intent(out) :: w ! wind in units of Msun/year (value is >=

0)

integer, intent(out) :: ierr

real(dp) :: L1, M1, R1, T1, xsurf, etaWR, Zsolar, Y, Z, etaCOOL,

etaHOT

real(dp) :: log10w

call get_star_ptr(id,s,ierr)

w = 0

ierr = 0

L1 = Lsurf
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M1 = Msurf

R1 = Rsurf

T1 = Tsurf

etaHOT = s% x_ctrl(1)

etaCOOL = s% x_ctrl(2)

etaWR = s% x_ctrl(3)

Zsolar = 0.019

xsurf = s%xa(s% net_iso(iprot), 1)+ s%xa(s% net_iso(ih1), 1) !H

mass fraction of the outermost cell, species 1 being neutrons

Y = s% xa(s%net_iso(ihe3),1) + s% xa(s%net_iso(ihe4),1)

Z = 1 - Y -xsurf

if (xsurf .GE. 0.4d0) then
if (T1 .LT. 15000d0) then

print *, ’Lsurf=’, L1, ’Tsurf=’, Tsurf , ’Xsurf=’, xsurf,

’using:de Jager’, etaCOOL

call eval_de_Jager_wind(w)

w = w *etaCOOL

else
print *, ’Lsurf=’, L1, ’Tsurf=’, Tsurf , ’Xsurf=’, xsurf,

’using: vink_tanh’, etaHOT

call eval_tanh_intrp_vink_wind(w)

w = w* etaHOT

end if
else !the thing is a WR star

print *, ’Lsurf=’, L1, ’Tsurf=’, Tsurf , ’Xsurf=’, xsurf, ’using:

Hamman’, etaWR

if (log10_cr(L1/Lsun) .LE. 4.5d0) then
log10w = -35.8d0 + 6.8d0*log10_cr(L1/Lsun)

w = exp10_cr(log10w)* etaWR

else
log10w = -11.95d0 + 1.5d0*log10_cr(L1/Lsun) - 2.85d0*(xsurf)

w = exp10_cr(log10w)* etaWR

end if
end if

contains

subroutine eval_de_Jager_wind(w)

! de Jager, C., Nieuwenhuijzen, H., & van der Hucht, K. A. 1988,

A&AS, 72, 259.

real(dp), intent(out) :: w

real(dp) :: log10w

include ’formats’

log10w = 1.769d0*log10_cr(L1/Lsun) - 1.676d0*log10_cr(T1) -

8.158d0

w = exp10_cr(log10w)

end subroutine eval_de_Jager_wind
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subroutine eval_tanh_intrp_vink_wind(w)

real(dp), intent(inout) :: w

real(dp) :: alfa, w1, w2, w_c, w_h, Teff_jump, logMdot, dT,

vinf_div_vesc

w = 0

if (T1 > 27500d0) then
vinf_div_vesc = 2.6d0 ! this is the hot side galactic value

vinf_div_vesc = vinf_div_vesc*pow_cr(Z/Zsolar,0.13d0) !

corrected for Z

logMdot = &
- 6.697d0 &
+ 2.194d0*log10_cr(L1/Lsun/1d5) &
- 1.313d0*log10_cr(M1/Msun/30) &
- 1.226d0*log10_cr(vinf_div_vesc/2d0) &
+ 0.933d0*log10_cr(T1/4d4) &
- 10.92d0*pow2(log10_cr(T1/4d4)) &
+ 0.85d0*log10_cr(Z/Zsolar)

w1 = exp10_cr(logMdot)

w = w1

else if (T1 < 22500d0) then
vinf_div_vesc = 1.3d0 ! this is the cool side galactic value

vinf_div_vesc = vinf_div_vesc*pow_cr(Z/Zsolar,0.13d0) ! corrected

for Z

logMdot = &
- 6.688d0 &
+ 2.210d0*log10_cr(L1/Lsun/1d5) &
- 1.339d0*log10_cr(M1/Msun/30) &
- 1.601d0*log10_cr(vinf_div_vesc/2d0) &
+ 1.07d0*log10_cr(T1/2d4) &
+ 0.85d0*log10_cr(Z/Zsolar)

w2 = exp10_cr(logMdot)

w = w2

else ! use Vink et al 2001, eqns 14 and 15 to set "jump"

temperature

Teff_jump = 1d3*(61.2d0 + 2.59d0*(-13.636d0 +

0.889d0*log10_cr(Z/Zsolar)))

dT = 100d0

print *, ’Teff_jump[K]’, Teff_jump

! first evaluate the mass loss rate one would have if T = 27500, all

rest held constant

vinf_div_vesc = 2.6d0 ! this is the hot side galactic value

vinf_div_vesc = vinf_div_vesc*pow_cr(Z/Zsolar,0.13d0) !

corrected for Z

w_h = &
- 6.697d0 &
+ 2.194d0*log10_cr(L1/Lsun/1d5) &
- 1.313d0*log10_cr(M1/Msun/30) &
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- 1.226d0*log10_cr(vinf_div_vesc/2d0) &
+ 0.933d0*log10_cr(27500/4d4) &
- 10.92d0*pow2(log10_cr(27500/4d4)) &
+ 0.85d0*log10_cr(Z/Zsolar)

w_h = exp10_cr(w_h)

!then evaluate the mass loss rate one would have if T= 22500,

all rest held constant

vinf_div_vesc = 1.3d0 ! this is the cool side galactic value

vinf_div_vesc = vinf_div_vesc*pow_cr(Z/Zsolar,0.13d0) !

corrected for Z

w_c = &
- 6.688d0 &
+ 2.210d0*log10_cr(L1/Lsun/1d5) &
- 1.339d0*log10_cr(M1/Msun/30) &
- 1.601d0*log10_cr(vinf_div_vesc/2d0) &
+ 1.07d0*log10_cr(22500/2d4) &
+ 0.85d0*log10_cr(Z/Zsolar)

w_c = exp10_cr(w_c)

!then interpolate between this two values

w = ((w_h - w_c)/2)*TANH((T1-Teff_jump)/(1d0*dT)) &
+(w_c+w_h)/2

!print *, ’USING TANH(’,(T1-Teff_jump)/(10d0*dT), &

! ’)=’,&

! TANH(T1-Teff_jump)/(10d0*dT), ’w_c=’, &

! w_c,&

! ’w_h=’, w_h, ’w=’,w

end if
end subroutine eval_tanh_intrp_vink_wind

end subroutine VdJNL_wind

A.2.3 Vink et al., Nieuwenhuijzen et al., Nugis & Lamers – VNJNL

subroutine VNJNL_wind(id, Lsurf, Msurf, Rsurf, Tsurf, w, ierr)

use crlibm_lib

type (star_info), pointer :: s

integer, intent(in) :: id

real(dp), intent(in) :: Lsurf, Msurf, Rsurf, Tsurf ! surface values

(cgs)

! NOTE: surface is outermost cell. not necessarily at photosphere.

! NOTE: don’t assume that vars are set at this point.

! so if you want values other than those given as args,

! you should use values from s% xh(:,:) and s% xa(:,:) only.

! rather than things like s% Teff or s% lnT(:) which have not been

set yet.
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real(dp), intent(out) :: w ! wind in units of Msun/year (value is >=

0)

integer, intent(out) :: ierr

real(dp) :: L1, M1, R1, T1, xsurf, etaWR, Zsolar, Y, Z, etaCOOL,

etaHOT

real(dp) :: log10w, w1, w2, T_high, T_low, alfa

call get_star_ptr(id,s,ierr)

w = 0

ierr = 0

L1 = Lsurf

M1 = Msurf

R1 = Rsurf

T1 = Tsurf

Zsolar = 0.019

!I use the same factor everywhere

etaHOT = s% x_ctrl(1)

etaCOOL = s% x_ctrl(2)

etaWR = s% x_ctrl(3) !eta is the factor for WR winds

!Assumes the use of approx21.net

xsurf = s%xa(s% net_iso(iprot), 1)+ s%xa(s% net_iso(ih1), 1) !H

mass fraction of the outermost cell, species 1 being neutrons

Y = s% xa(s%net_iso(ihe3),1) + s% xa(s%net_iso(ihe4),1)

Z = 1 - Y -xsurf

T_high = 11000d0

T_low = 10000d0

if (xsurf .GE. 0.4d0) then
if (T1 <= T_low) then

print *, ’using: NJ, eta=’, etaCOOL

call eval_Nieuwenhuijzen_wind(w)

w = w * etaCOOL

else if (T1 >= T_high) then
print *, ’using: Vink_tanh, eta=’, etaHOT

call eval_tanh_intrp_vink_wind(w)

w = w * etaHOT

else ! transition

print *, ’interpolating NJ and Vink_tanh, eta=’, etaHOT

call eval_Nieuwenhuijzen_wind(w1)

call eval_tanh_intrp_vink_wind(w2)

alfa = (T1 - T_low)/(T_high - T_low)

w = (1-alfa)*w1 + alfa*w2

w = w * etaHOT

end if
else !means it’s a WR star

print *, ’using: N&L, eta=’, etaWR

w = 1d-11 * pow_cr(L1/Lsun,1.29d0) * pow_cr(Y,1.7d0) * sqrt(Z)
w = w * etaWR

end if
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contains

subroutine eval_Nieuwenhuijzen_wind(w)

! Nieuwenhuijzen, H.; de Jager, C. 1990, A&A, 231, 134 (eqn 2)

real(dp), intent(out) :: w

real(dp) :: log10w

include ’formats’

log10w = -14.02d0 + &
1.24d0*log10_cr(L1/Lsun) + &
0.16d0*log10_cr(M1/Msun) + &
0.81d0*log10_cr(R1/Rsun)

w = exp10_cr(log10w)

end subroutine eval_Nieuwenhuijzen_wind

subroutine eval_tanh_intrp_vink_wind(w)

real(dp), intent(inout) :: w

real(dp) :: alfa, w1, w2, w_c, w_h, Teff_jump, logMdot, dT,

vinf_div_vesc

w = 0

if (T1 > 27500d0) then
vinf_div_vesc = 2.6d0 ! this is the hot side galactic value

vinf_div_vesc = vinf_div_vesc*pow_cr(Z/Zsolar,0.13d0) !

corrected for Z

logMdot = &
- 6.697d0 &
+ 2.194d0*log10_cr(L1/Lsun/1d5) &
- 1.313d0*log10_cr(M1/Msun/30) &
- 1.226d0*log10_cr(vinf_div_vesc/2d0) &
+ 0.933d0*log10_cr(T1/4d4) &
- 10.92d0*pow2(log10_cr(T1/4d4)) &
+ 0.85d0*log10_cr(Z/Zsolar)

w1 = exp10_cr(logMdot)

w = w1

else if (T1 < 22500d0) then
vinf_div_vesc = 1.3d0 ! this is the cool side galactic value

vinf_div_vesc = vinf_div_vesc*pow_cr(Z/Zsolar,0.13d0) ! corrected

for Z

logMdot = &
- 6.688d0 &
+ 2.210d0*log10_cr(L1/Lsun/1d5) &
- 1.339d0*log10_cr(M1/Msun/30) &
- 1.601d0*log10_cr(vinf_div_vesc/2d0) &
+ 1.07d0*log10_cr(T1/2d4) &
+ 0.85d0*log10_cr(Z/Zsolar)
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w2 = exp10_cr(logMdot)

w = w2

else ! use Vink et al 2001, eqns 14 and 15 to set "jump"

temperature

Teff_jump = 1d3*(61.2d0 + 2.59d0*(-13.636d0 +

0.889d0*log10_cr(Z/Zsolar)))

dT = 100d0

print *, ’Teff_jump[K]’, Teff_jump

! first evaluate the mass loss rate one would have if T = 27500, all

rest held constant

vinf_div_vesc = 2.6d0 ! this is the hot side galactic value

vinf_div_vesc = vinf_div_vesc*pow_cr(Z/Zsolar,0.13d0) !

corrected for Z

w_h = &
- 6.697d0 &
+ 2.194d0*log10_cr(L1/Lsun/1d5) &
- 1.313d0*log10_cr(M1/Msun/30) &
- 1.226d0*log10_cr(vinf_div_vesc/2d0) &
+ 0.933d0*log10_cr(27500/4d4) &
- 10.92d0*pow2(log10_cr(27500/4d4)) &
+ 0.85d0*log10_cr(Z/Zsolar)

w_h = exp10_cr(w_h)

!then evaluate the mass loss rate one would have if T= 22500,

all rest held constant

vinf_div_vesc = 1.3d0 ! this is the cool side galactic value

vinf_div_vesc = vinf_div_vesc*pow_cr(Z/Zsolar,0.13d0) !

corrected for Z

w_c = &
- 6.688d0 &
+ 2.210d0*log10_cr(L1/Lsun/1d5) &

- 1.339d0*log10_cr(M1/Msun/30) &
- 1.601d0*log10_cr(vinf_div_vesc/2d0) &
+ 1.07d0*log10_cr(22500/2d4) &
+ 0.85d0*log10_cr(Z/Zsolar)

w_c = exp10_cr(w_c)

!then interpolate between this two values

w = ((w_h - w_c)/2)*TANH((T1-Teff_jump)/(1d0*dT)) &
+(w_c+w_h)/2

end if

end subroutine eval_tanh_intrp_vink_wind

end subroutine VNJNL_wind

A.2.4 Vink et al., Nieuwenhuijzen et al., Hamann et al. – VNJH

subroutine VNJH_wind(id, Lsurf, Msurf, Rsurf, Tsurf, w, ierr)

use crlibm_lib
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type (star_info), pointer :: s

integer, intent(in) :: id

real(dp), intent(in) :: Lsurf, Msurf, Rsurf, Tsurf ! surface values

(cgs)

! NOTE: surface is outermost cell. not necessarily at photosphere.

! NOTE: don’t assume that vars are set at this point.

! so if you want values other than those given as args,

! you should use values from s% xh(:,:) and s% xa(:,:) only.

! rather than things like s% Teff or s% lnT(:) which have not been

set yet.

real(dp), intent(out) :: w ! wind in units of Msun/year (value is >=

0)

integer, intent(out) :: ierr

real(dp) :: L1, M1, R1, T1, xsurf, etaWR, Zsolar, Y, Z, etaCOOL,

etaHOT

real(dp) :: log10w, w1, w2, T_high, T_low, alfa

call get_star_ptr(id,s,ierr)

w = 0

ierr = 0

L1 = Lsurf

M1 = Msurf

R1 = Rsurf

T1 = Tsurf

Zsolar = 0.019

!I use the same factor everywhere

etaHOT = s% x_ctrl(1)

etaCOOL = s% x_ctrl(2)

etaWR = s% x_ctrl(3) !eta is the factor for WR winds

xsurf = s%xa(s% net_iso(iprot), 1)+ s%xa(s% net_iso(ih1), 1) !H

mass fraction of the outermost cell, species 1 being neutrons

Y = s% xa(s%net_iso(ihe3),1) + s% xa(s%net_iso(ihe4),1)

Z = 1 - Y -xsurf

T_high = 11000d0

T_low = 10000d0

if (xsurf .GE. 0.4d0) then
if (T1 <= T_low) then

print *, ’using: NJ, eta=’, etaCOOL

call eval_Nieuwenhuijzen_wind(w)

w = w * etaCOOL

else if (T1 >= T_high) then
print *, ’using: Vink_tanh, eta=’, etaHOT

call eval_tanh_intrp_vink_wind(w)

w = w * etaHOT

else ! transition

print *, ’interpolating NJ and Vink_tanh, eta=’, etaHOT

call eval_Nieuwenhuijzen_wind(w1)

call eval_tanh_intrp_vink_wind(w2)

132



APPENDIX A. MESA PARAMETERS FILES AND CUSTOMIZED ROUTINES

alfa = (T1 - T_low)/(T_high - T_low)

w = (1-alfa)*w1 + alfa*w2

w = w * etaHOT

end if
else !the thing is a WR star

print *, ’Lsurf=’, L1, ’Tsurf=’, Tsurf , ’Xsurf=’, xsurf, ’using:

manual Hamann’, etaWR

if (log10_cr(L1/Lsun) .LE. 4.5d0) then
log10w = -35.8d0 + 6.8d0*log10_cr(L1/Lsun)

w = exp10_cr(log10w)* etaWR

else
log10w = -11.95d0 + 1.5d0*log10_cr(L1/Lsun) - 2.85d0*(xsurf)

w = exp10_cr(log10w)* etaWR

end if
end if

contains

subroutine eval_Nieuwenhuijzen_wind(w)

! Nieuwenhuijzen, H.; de Jager, C. 1990, A&A, 231, 134 (eqn 2)

real(dp), intent(out) :: w

real(dp) :: log10w

include ’formats’

log10w = -14.02d0 + &
1.24d0*log10_cr(L1/Lsun) + &
0.16d0*log10_cr(M1/Msun) + &
0.81d0*log10_cr(R1/Rsun)

w = exp10_cr(log10w)

end subroutine eval_Nieuwenhuijzen_wind

subroutine eval_tanh_intrp_vink_wind(w)

real(dp), intent(inout) :: w

real(dp) :: alfa, w1, w2, w_c, w_h, Teff_jump, logMdot, dT,

vinf_div_vesc

w = 0

if (T1 > 27500d0) then
vinf_div_vesc = 2.6d0 ! this is the hot side galactic value

vinf_div_vesc = vinf_div_vesc*pow_cr(Z/Zsolar,0.13d0) !

corrected for Z

logMdot = &
- 6.697d0 &
+ 2.194d0*log10_cr(L1/Lsun/1d5) &
- 1.313d0*log10_cr(M1/Msun/30) &
- 1.226d0*log10_cr(vinf_div_vesc/2d0) &
+ 0.933d0*log10_cr(T1/4d4) &
- 10.92d0*pow2(log10_cr(T1/4d4)) &
+ 0.85d0*log10_cr(Z/Zsolar)
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w1 = exp10_cr(logMdot)

w = w1

else if (T1 < 22500d0) then
vinf_div_vesc = 1.3d0 ! this is the cool side galactic value

vinf_div_vesc = vinf_div_vesc*pow_cr(Z/Zsolar,0.13d0) ! corrected

for Z

logMdot = &
- 6.688d0 &
+ 2.210d0*log10_cr(L1/Lsun/1d5) &
- 1.339d0*log10_cr(M1/Msun/30) &
- 1.601d0*log10_cr(vinf_div_vesc/2d0) &
+ 1.07d0*log10_cr(T1/2d4) &
+ 0.85d0*log10_cr(Z/Zsolar)

w2 = exp10_cr(logMdot)

w = w2

else ! use Vink et al 2001, eqns 14 and 15 to set "jump"

temperature

Teff_jump = 1d3*(61.2d0 + 2.59d0*(-13.636d0 +

0.889d0*log10_cr(Z/Zsolar)))

dT = 100d0

print *, ’Teff_jump[K]’, Teff_jump

! first evaluate the mass loss rate one would have if T = 27500, all

rest held constant

vinf_div_vesc = 2.6d0 ! this is the hot side galactic value

vinf_div_vesc = vinf_div_vesc*pow_cr(Z/Zsolar,0.13d0) !

corrected for Z

w_h = &
- 6.697d0 &
+ 2.194d0*log10_cr(L1/Lsun/1d5) &
- 1.313d0*log10_cr(M1/Msun/30) &
- 1.226d0*log10_cr(vinf_div_vesc/2d0) &
+ 0.933d0*log10_cr(27500/4d4) &
- 10.92d0*pow2(log10_cr(27500/4d4)) &
+ 0.85d0*log10_cr(Z/Zsolar)

w_h = exp10_cr(w_h)

!then evaluate the mass loss rate one would have if T= 22500,

all rest held constant

vinf_div_vesc = 1.3d0 ! this is the cool side galactic value

vinf_div_vesc = vinf_div_vesc*pow_cr(Z/Zsolar,0.13d0) !

corrected for Z

w_c = &
- 6.688d0 &
+ 2.210d0*log10_cr(L1/Lsun/1d5) &
- 1.339d0*log10_cr(M1/Msun/30) &
- 1.601d0*log10_cr(vinf_div_vesc/2d0) &
+ 1.07d0*log10_cr(22500/2d4) &
+ 0.85d0*log10_cr(Z/Zsolar)

w_c = exp10_cr(w_c)

134



APPENDIX A. MESA PARAMETERS FILES AND CUSTOMIZED ROUTINES

!then interpolate between this two values

w = ((w_h - w_c)/2)*TANH((T1-Teff_jump)/(1d0*dT)) &
+(w_c+w_h)/2

!print *, ’USING TANH(’,(T1-Teff_jump)/(10d0*dT), &

! ’)=’,&

! TANH(T1-Teff_jump)/(10d0*dT), ’w_c=’, &

! w_c,&

! ’w_h=’, w_h, ’w=’,w

end if

end subroutine eval_tanh_intrp_vink_wind

end subroutine VNJH_wind

A.2.5 Vink et al., van Loon et al., Hamann – VvLH

subroutine VvLH_wind(id, Lsurf, Msurf, Rsurf, Tsurf, w, ierr)

use crlibm_lib

type (star_info), pointer :: s

integer, intent(in) :: id

real(dp), intent(in) :: Lsurf, Msurf, Rsurf, Tsurf ! surface values

(cgs)

! NOTE: surface is outermost cell. not necessarily at photosphere.

! NOTE: don’t assume that vars are set at this point.

! so if you want values other than those given as args,

! you should use values from s% xh(:,:) and s% xa(:,:) only.

! rather than things like s% Teff or s% lnT(:) which have not been

set yet.

real(dp), intent(out) :: w ! wind in units of Msun/year (value is >=

0)

integer, intent(out) :: ierr

real(dp) :: L1, M1, R1, T1, xsurf, etaWR, etaHOT, etaCOOL, Zsolar,

Y, Z

real(dp) :: log10w, w1, w2, T_high, T_low, alfa

call get_star_ptr(id,s,ierr)

w = 0

ierr = 0

L1 = Lsurf

M1 = Msurf

R1 = Rsurf

T1 = Tsurf

Zsolar = 0.019

!I use the same factor everywhere

etaHOT = s% x_ctrl(1)

etaCOOL = s% x_ctrl(2)

etaWR = s% x_ctrl(3) !eta is the factor for WR winds

xsurf = s%xa(s% net_iso(iprot), 1)+ s%xa(s% net_iso(ih1), 1) !H

mass fraction of the outermost cell, species 1 being neutrons
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Y = s% xa(s%net_iso(ihe3),1) + s% xa(s%net_iso(ihe4),1)

Z = 1 - Y -xsurf

T_high = 11000d0

T_low = 10000d0

if (xsurf .GE. 0.4d0) then
if (T1 <= T_low) then

print *, ’using: van loon, eta=’, etaCOOL

call eval_van_Loon_wind(w)

w = w * etaCOOL

else if (T1 >= T_high) then
print *, ’using: Vink_tanh, eta=’, etaHOT

call eval_tanh_intrp_vink_wind(w)

w = w * etaHOT

else ! transition

print *, ’interpolating de Jager and Vink_tanh, eta=’, etaHOT

call eval_van_Loon_wind(w1)

call eval_tanh_intrp_vink_wind(w2)

alfa = (T1 - T_low)/(T_high - T_low)

w = (1-alfa)*w1 + alfa*w2

w = w * etaHOT

end if
else !means it’s a WR star

print *, ’Lsurf=’, L1, ’Tsurf=’, Tsurf , ’Xsurf=’, xsurf, ’using:

Hamman’, etaWR

if (log10_cr(L1/Lsun) .LE. 4.5d0) then
log10w = -35.8d0 + 6.8d0*log10_cr(L1/Lsun)

w = exp10_cr(log10w)* etaWR

else
log10w = -11.95d0 + 1.5d0*log10_cr(L1/Lsun) - 2.85d0*(xsurf)

w = exp10_cr(log10w)* etaWR

end if
end if

contains

subroutine eval_van_Loon_wind(w)

! van Loon et al. 2005, A&A, 438, 273

real(dp), intent(out) :: w

real(dp) :: log10w

include ’formats’

log10w = -5.65d0 + 1.05*log10_cr(L1/(1d4*Lsun)) -

6.3d0*log10_cr(T1/35d2)

w = exp10_cr(log10w)

end subroutine eval_van_Loon_wind

subroutine eval_tanh_intrp_vink_wind(w)

real(dp), intent(inout) :: w

real(dp) :: alfa, w1, w2, w_c, w_h, Teff_jump, logMdot, dT,
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vinf_div_vesc

w = 0

if (T1 > 27500d0) then
vinf_div_vesc = 2.6d0 ! this is the hot side galactic value

vinf_div_vesc = vinf_div_vesc*pow_cr(Z/Zsolar,0.13d0) !

corrected for Z

logMdot = &
- 6.697d0 &
+ 2.194d0*log10_cr(L1/Lsun/1d5) &
- 1.313d0*log10_cr(M1/Msun/30) &
- 1.226d0*log10_cr(vinf_div_vesc/2d0) &
+ 0.933d0*log10_cr(T1/4d4) &
- 10.92d0*pow2(log10_cr(T1/4d4)) &
+ 0.85d0*log10_cr(Z/Zsolar)

w1 = exp10_cr(logMdot)

w = w1

else if (T1 < 22500d0) then
vinf_div_vesc = 1.3d0 ! this is the cool side galactic value

vinf_div_vesc = vinf_div_vesc*pow_cr(Z/Zsolar,0.13d0) ! corrected

for Z

logMdot = &
- 6.688d0 &
+ 2.210d0*log10_cr(L1/Lsun/1d5) &
- 1.339d0*log10_cr(M1/Msun/30) &
- 1.601d0*log10_cr(vinf_div_vesc/2d0) &
+ 1.07d0*log10_cr(T1/2d4) &
+ 0.85d0*log10_cr(Z/Zsolar)

w2 = exp10_cr(logMdot)

w = w2

else ! use Vink et al 2001, eqns 14 and 15 to set "jump"

temperature

Teff_jump = 1d3*(61.2d0 + 2.59d0*(-13.636d0 +

0.889d0*log10_cr(Z/Zsolar)))

dT = 100d0

print *, ’Teff_jump[K]’, Teff_jump

! first evaluate the mass loss rate one would have if T = 27500, all

rest held constant

vinf_div_vesc = 2.6d0 ! this is the hot side galactic value

vinf_div_vesc = vinf_div_vesc*pow_cr(Z/Zsolar,0.13d0) !

corrected for Z

w_h = &
- 6.697d0 &
+ 2.194d0*log10_cr(L1/Lsun/1d5) &
- 1.313d0*log10_cr(M1/Msun/30) &
- 1.226d0*log10_cr(vinf_div_vesc/2d0) &
+ 0.933d0*log10_cr(27500/4d4) &
- 10.92d0*pow2(log10_cr(27500/4d4)) &
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+ 0.85d0*log10_cr(Z/Zsolar)

w_h = exp10_cr(w_h)

!then evaluate the mass loss rate one would have if T= 22500,

all rest held constant

vinf_div_vesc = 1.3d0 ! this is the cool side galactic value

vinf_div_vesc = vinf_div_vesc*pow_cr(Z/Zsolar,0.13d0) !

corrected for Z

w_c = &
- 6.688d0 &
+ 2.210d0*log10_cr(L1/Lsun/1d5) &
- 1.339d0*log10_cr(M1/Msun/30) &
- 1.601d0*log10_cr(vinf_div_vesc/2d0) &
+ 1.07d0*log10_cr(22500/2d4) &
+ 0.85d0*log10_cr(Z/Zsolar)

w_c = exp10_cr(w_c)

!then interpolate between this two values

w = ((w_h - w_c)/2)*TANH((T1-Teff_jump)/(1d0*dT)) &
+(w_c+w_h)/2

!print *, ’USING TANH(’,(T1-Teff_jump)/(10d0*dT), &

! ’)=’,&

! TANH(T1-Teff_jump)/(10d0*dT), ’w_c=’, &

! w_c,&

! ’w_h=’, w_h, ’w=’,w

end if

end subroutine eval_tanh_intrp_vink_wind

end subroutine VvLH_wind

A.2.6 Vink et al., van Loon et al., Nugis & Lamers – VvLNL

subroutine VvLNL_wind(id, Lsurf, Msurf, Rsurf, Tsurf, w, ierr)

use crlibm_lib

type (star_info), pointer :: s

integer, intent(in) :: id

real(dp), intent(in) :: Lsurf, Msurf, Rsurf, Tsurf ! surface values

(cgs)

! NOTE: surface is outermost cell. not necessarily at photosphere.

! NOTE: don’t assume that vars are set at this point.

! so if you want values other than those given as args,

! you should use values from s% xh(:,:) and s% xa(:,:) only.

! rather than things like s% Teff or s% lnT(:) which have not been

set yet.

real(dp), intent(out) :: w ! wind in units of Msun/year (value is >=

0)

integer, intent(out) :: ierr

real(dp) :: L1, M1, R1, T1, xsurf, etaWR, etaHOT, etaCOOL, Zsolar,
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Y, Z

real(dp) :: log10w, w1, w2, T_high, T_low, alfa

call get_star_ptr(id,s,ierr)

w = 0

ierr = 0

L1 = Lsurf

M1 = Msurf

R1 = Rsurf

T1 = Tsurf

Zsolar = 0.019

!I use the same factor everywhere

etaHOT = s% x_ctrl(1)

etaCOOL = s% x_ctrl(2)

etaWR = s% x_ctrl(3) !eta is the factor for WR winds

xsurf = s%xa(s% net_iso(iprot), 1)+ s%xa(s% net_iso(ih1), 1) !H

mass fraction of the outermost cell, species 1 being neutrons

Y = s% xa(s%net_iso(ihe3),1) + s% xa(s%net_iso(ihe4),1)

Z = 1 - Y -xsurf

T_high = 11000d0

T_low = 10000d0

if (xsurf .GE. 0.4d0) then
if (T1 <= T_low) then

print *, ’using: de_Jager, eta=’, etaCOOL

call eval_van_Loon_wind(w)

w = w * etaCOOL

else if (T1 >= T_high) then
print *, ’using: Vink_tanh, eta=’, etaHOT

call eval_tanh_intrp_vink_wind(w)

w = w * etaHOT

else ! transition

print *, ’interpolating de Jager and Vink_tanh, eta=’, etaHOT

call eval_van_Loon_wind(w1)

call eval_tanh_intrp_vink_wind(w2)

alfa = (T1 - T_low)/(T_high - T_low)

w = (1-alfa)*w1 + alfa*w2

w = w * etaHOT

end if
else !means it’s a WR star

print *, ’using: N&L, eta=’, etaWR

w = 1d-11 * pow_cr(L1/Lsun,1.29d0) * pow_cr(Y,1.7d0) * sqrt(Z)
w = w * etaWR

end if

contains

subroutine eval_van_Loon_wind(w)

! van Loon et al. 2005, A&A, 438, 273

real(dp), intent(out) :: w
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real(dp) :: log10w

include ’formats’

log10w = -5.65d0 + 1.05*log10_cr(L1/(1d4*Lsun)) -

6.3d0*log10_cr(T1/35d2)

w = exp10_cr(log10w)

end subroutine eval_van_Loon_wind

subroutine eval_tanh_intrp_vink_wind(w)

real(dp), intent(inout) :: w

real(dp) :: alfa, w1, w2, w_c, w_h, Teff_jump, logMdot, dT,

vinf_div_vesc

w = 0

if (T1 > 27500d0) then
vinf_div_vesc = 2.6d0 ! this is the hot side galactic value

vinf_div_vesc = vinf_div_vesc*pow_cr(Z/Zsolar,0.13d0) !

corrected for Z

logMdot = &
- 6.697d0 &
+ 2.194d0*log10_cr(L1/Lsun/1d5) &
- 1.313d0*log10_cr(M1/Msun/30) &
- 1.226d0*log10_cr(vinf_div_vesc/2d0) &
+ 0.933d0*log10_cr(T1/4d4) &
- 10.92d0*pow2(log10_cr(T1/4d4)) &
+ 0.85d0*log10_cr(Z/Zsolar)

w1 = exp10_cr(logMdot)

w = w1

else if (T1 < 22500d0) then
vinf_div_vesc = 1.3d0 ! this is the cool side galactic value

vinf_div_vesc = vinf_div_vesc*pow_cr(Z/Zsolar,0.13d0) ! corrected

for Z

logMdot = &
- 6.688d0 &
+ 2.210d0*log10_cr(L1/Lsun/1d5) &
- 1.339d0*log10_cr(M1/Msun/30) &
- 1.601d0*log10_cr(vinf_div_vesc/2d0) &
+ 1.07d0*log10_cr(T1/2d4) &
+ 0.85d0*log10_cr(Z/Zsolar)

w2 = exp10_cr(logMdot)

w = w2

else ! use Vink et al 2001, eqns 14 and 15 to set "jump"

temperature

Teff_jump = 1d3*(61.2d0 + 2.59d0*(-13.636d0 +

0.889d0*log10_cr(Z/Zsolar)))

dT = 100d0

print *, ’Teff_jump[K]’, Teff_jump

! first evaluate the mass loss rate one would have if T = 27500, all

rest held constant
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vinf_div_vesc = 2.6d0 ! this is the hot side galactic value

vinf_div_vesc = vinf_div_vesc*pow_cr(Z/Zsolar,0.13d0) !

corrected for Z

w_h = &
- 6.697d0 &
+ 2.194d0*log10_cr(L1/Lsun/1d5) &
- 1.313d0*log10_cr(M1/Msun/30) &
- 1.226d0*log10_cr(vinf_div_vesc/2d0) &
+ 0.933d0*log10_cr(27500/4d4) &
- 10.92d0*pow2(log10_cr(27500/4d4)) &
+ 0.85d0*log10_cr(Z/Zsolar)

w_h = exp10_cr(w_h)

!then evaluate the mass loss rate one would have if T= 22500,

all rest held constant

vinf_div_vesc = 1.3d0 ! this is the cool side galactic value

vinf_div_vesc = vinf_div_vesc*pow_cr(Z/Zsolar,0.13d0) !

corrected for Z

w_c = &
- 6.688d0 &
+ 2.210d0*log10_cr(L1/Lsun/1d5) &
- 1.339d0*log10_cr(M1/Msun/30) &
- 1.601d0*log10_cr(vinf_div_vesc/2d0) &
+ 1.07d0*log10_cr(22500/2d4) &
+ 0.85d0*log10_cr(Z/Zsolar)

w_c = exp10_cr(w_c)

!then interpolate between this two values

w = ((w_h - w_c)/2)*TANH((T1-Teff_jump)/(1d0*dT)) &
+(w_c+w_h)/2

!print *, ’USING TANH(’,(T1-Teff_jump)/(10d0*dT), &

! ’)=’,&

! TANH(T1-Teff_jump)/(10d0*dT), ’w_c=’, &

! w_c,&

! ’w_h=’, w_h, ’w=’,w

end if

end subroutine eval_tanh_intrp_vink_wind

end subroutine VvLNL_wind

A.2.7 Kudritzki et a., de Jager et al., Nugis & Lamers – KdJNL

subroutine KdJNL_wind(id, Lsurf, Msurf, Rsurf, Tsurf, w, ierr)

use crlibm_lib

type (star_info), pointer :: s

integer, intent(in) :: id

real(dp), intent(in) :: Lsurf, Msurf, Rsurf, Tsurf ! surface values

(cgs)
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! NOTE: surface is outermost cell. not necessarily at photosphere.

! NOTE: don’t assume that vars are set at this point.

! so if you want values other than those given as args,

! you should use values from s% xh(:,:) and s% xa(:,:) only.

! rather than things like s% Teff or s% lnT(:) which have not been

set yet.

real(dp), intent(out) :: w ! wind in units of Msun/year (value is >=

0)

integer, intent(out) :: ierr

real(dp) :: L1, M1, R1, T1, xsurf, Y, Z, etaHOT, etaCOOL, etaWR

real(dp) :: log10w

call get_star_ptr(id,s,ierr)

w = 0

ierr = 0

L1 = Lsurf

M1 = Msurf

R1 = Rsurf

T1 = Tsurf

etaHOT = s% x_ctrl(1)

s% Kudritzki_wind_eta = etaHOT

etaCOOL = s% x_ctrl(2)

etaWR = s% x_ctrl(3)

xsurf = s%xa(s% net_iso(iprot), 1)+ s%xa(s% net_iso(ih1), 1) !H

mass fraction of the outermost cell, species 1 being neutrons

Y = s% xa(s%net_iso(ihe3),1) + s% xa(s%net_iso(ihe4),1)

Z = 1- xsurf - Y

if (xsurf .GE. 0.4d0) then
if (T1 .LT. 15000d0) then

print *, ’Lsurf=’, L1, ’Tsurf=’, Tsurf , ’Xsurf=’, xsurf,

’using: Nieuwenhuijzen’, etaCOOL

call eval_de_Jager_wind(w)

w = w * etaCOOL

else !hot star

print *, ’Lsurf=’, L1, ’Tsurf=’, Tsurf , ’Xsurf=’, xsurf,

’using: Kudritzki’, s% Kudritzki_wind_eta

call eval_Kudritzki_wind(w)

end if
else !the thing is a WR star

print *, ’Lsurf=’, L1, ’Tsurf=’, Tsurf , ’Xsurf=’, xsurf, ’using:

Nugis & Lamers’, etaWR

w = 1d-11 * pow_cr(L1/Lsun,1.29d0) * pow_cr(Y,1.7d0) * sqrt(Z)
w = w * etaWR

end if

contains

subroutine eval_Kudritzki_wind(w)

use mod_kuma, only: kuma
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real(dp), intent(inout) :: w

real(dp) :: xlogl, xlteff, stmass, xsurf, xmdfic, vinfkm

xlogl = log10_cr(L1/Lsun)

xlteff = log10_cr(T1)

stmass = M1/Msun

xsurf = s% xa(2,1)

! output xmdfic = mass loss rate [Msun/yr]

! output vinfkm = v_infinity

call kuma(xlogl,xlteff,stmass,xsurf,xmdfic,vinfkm)

w = xmdfic*s% Kudritzki_wind_eta

! if (dbg) write(*,*) ’lg eval_Kudritzki_wind’, log10_cr(w)

end subroutine eval_Kudritzki_wind

subroutine eval_de_Jager_wind(w)

! de Jager, C., Nieuwenhuijzen, H., & van der Hucht, K. A. 1988,

A&AS, 72, 259.

$

real(dp), intent(out) :: w

real(dp) :: log10w

include ’formats’

log10w = 1.769d0*log10_cr(L1/Lsun) - 1.676d0*log10_cr(T1) -

8.158d0

$

w = exp10_cr(log10w)

end subroutine eval_de_Jager_wind

end subroutine KdJNL_wind

A.2.8 Kudritzki et al., de Jager et al., Hamann et al. – KdJH

subroutine KdJH_wind(id, Lsurf, Msurf, Rsurf, Tsurf, w, ierr)

use crlibm_lib

type (star_info), pointer :: s

integer, intent(in) :: id

real(dp), intent(in) :: Lsurf, Msurf, Rsurf, Tsurf ! surface values

(cgs)

! NOTE: surface is outermost cell. not necessarily at photosphere.

! NOTE: don’t assume that vars are set at this point.

! so if you want values other than those given as args,

! you should use values from s% xh(:,:) and s% xa(:,:) only.

! rather than things like s% Teff or s% lnT(:) which have not been

set yet.

real(dp), intent(out) :: w ! wind in units of Msun/year (value is >=

0)

integer, intent(out) :: ierr
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real(dp) :: L1, M1, R1, T1, xsurf, etaWR, etaHOT, etaCOOL

real(dp) :: log10w

call get_star_ptr(id,s,ierr)

w = 0

ierr = 0

L1 = Lsurf

M1 = Msurf

R1 = Rsurf

T1 = Tsurf

etaHOT = s% x_ctrl(1)

s% Kudritzki_wind_eta = etaHOT

etaCOOL = s% x_ctrl(2)

etaWR = s% x_ctrl(3) !eta is the factor for WR winds

xsurf = s%xa(s% net_iso(iprot), 1)+ s%xa(s% net_iso(ih1), 1) !H

mass fraction of the outermost cell, species 1 being neutrons

if (xsurf .GE. 0.4d0) then
if (T1 .LT. 15000d0) then

print *, ’Lsurf=’, L1, ’Tsurf=’, Tsurf , ’Xsurf=’, xsurf,

’using: Nieuwenhuijzen’, etaCOOL

call eval_de_Jager_wind(w)

w = w * etaCOOL

else !hot star

print *, ’Lsurf=’, L1, ’Tsurf=’, Tsurf , ’Xsurf=’, xsurf,

’using: Kudritzki’, s% Kudritzki_wind_eta

call eval_Kudritzki_wind(w)

end if
else !the thing is a WR star

print *, ’Lsurf=’, L1, ’Tsurf=’, Tsurf , ’Xsurf=’, xsurf, ’using:

manual Hamann’, etaWR

if (log10_cr(L1/Lsun) .LE. 4.5d0) then
log10w = -35.8d0 + 6.8d0*log10_cr(L1/Lsun)

w = exp10_cr(log10w)* etaWR

else
log10w = -11.95d0 + 1.5d0*log10_cr(L1/Lsun) - 2.85d0*(xsurf)

w = exp10_cr(log10w)* etaWR

end if
end if

contains

subroutine eval_de_Jager_wind(w)

! de Jager, C., Nieuwenhuijzen, H., & van der Hucht, K. A. 1988,

A&AS, 72, 259.

$

real(dp), intent(out) :: w

real(dp) :: log10w

include ’formats’

log10w = 1.769d0*log10_cr(L1/Lsun) - 1.676d0*log10_cr(T1) -

144



APPENDIX A. MESA PARAMETERS FILES AND CUSTOMIZED ROUTINES

8.158d0

$

w = exp10_cr(log10w)

end subroutine eval_de_Jager_wind

subroutine eval_Kudritzki_wind(w)

use mod_kuma, only: kuma

real(dp), intent(inout) :: w

real(dp) :: xlogl, xlteff, stmass, xsurf, xmdfic, vinfkm

xlogl = log10_cr(L1/Lsun)

xlteff = log10_cr(T1)

stmass = M1/Msun

xsurf = s% xa(2,1)

! output xmdfic = mass loss rate [Msun/yr]

! output vinfkm = v_infinity

call kuma(xlogl,xlteff,stmass,xsurf,xmdfic,vinfkm)

w = xmdfic*s% Kudritzki_wind_eta

! if (dbg) write(*,*) ’lg eval_Kudritzki_wind’, log10_cr(w)

end subroutine eval_Kudritzki_wind

end subroutine KdJH_wind

A.2.9 Kudritzki et al., Nieuwenhuijzen et al., Nugis & Lamers – KNJNL

subroutine KNJNL_wind(id, Lsurf, Msurf, Rsurf, Tsurf, w, ierr)

use crlibm_lib

type (star_info), pointer :: s

integer, intent(in) :: id

real(dp), intent(in) :: Lsurf, Msurf, Rsurf, Tsurf ! surface values

(cgs)

! NOTE: surface is outermost cell. not necessarily at photosphere.

! NOTE: don’t assume that vars are set at this point.

! so if you want values other than those given as args,

! you should use values from s% xh(:,:) and s% xa(:,:) only.

! rather than things like s% Teff or s% lnT(:) which have not been

set yet.

real(dp), intent(out) :: w ! wind in units of Msun/year (value is >=

0)

integer, intent(out) :: ierr

real(dp) :: L1, M1, R1, T1, xsurf, Y, Z, etaHOT, etaCOOL, etaWR

real(dp) :: log10w

call get_star_ptr(id,s,ierr)

w = 0

ierr = 0

L1 = Lsurf

M1 = Msurf
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R1 = Rsurf

T1 = Tsurf

etaHOT = s% x_ctrl(1)

s% Kudritzki_wind_eta = etaHOT

etaCOOL = s% x_ctrl(2)

etaWR = s% x_ctrl(3)

xsurf = s%xa(s% net_iso(iprot), 1)+ s%xa(s% net_iso(ih1), 1)

!H mass fraction of the outermost cell, species 1 being

neutrons

Y = s% xa(s%net_iso(ihe3),1) + s% xa(s%net_iso(ihe4),1)

Z = 1- xsurf - Y

if (xsurf .GE. 0.4d0) then
if (T1 .LT. 15000d0) then

print *, ’Lsurf=’, L1, ’Tsurf=’, Tsurf , ’Xsurf=’,

xsurf, ’using: Nieuwenhuijzen’, etaCOOL

call eval_Nieuwenhuijzen_wind(w)

w = w * etaCOOL

else !hot star

print *, ’Lsurf=’, L1, ’Tsurf=’, Tsurf , ’Xsurf=’,

xsurf, ’using: Kudritzki’, s% Kudritzki_wind_eta

call eval_Kudritzki_wind(w)

end if
else !the thing is a WR star

print *, ’Lsurf=’, L1, ’Tsurf=’, Tsurf , ’Xsurf=’,

xsurf, ’using: Nugis & Lamers’, etaWR

w = 1d-11 * pow_cr(L1/Lsun,1.29d0) * pow_cr(Y,1.7d0)

* sqrt(Z)
w = w * etaWR

end if

contains

subroutine eval_Kudritzki_wind(w)

use mod_kuma, only: kuma

real(dp), intent(inout) :: w

real(dp) :: xlogl, xlteff, stmass, xsurf, xmdfic, vinfkm

xlogl = log10_cr(L1/Lsun)

xlteff = log10_cr(T1)

stmass = M1/Msun

xsurf = s% xa(2,1)

! output xmdfic = mass loss rate [Msun/yr]

! output vinfkm = v_infinity

call kuma(xlogl,xlteff,stmass,xsurf,xmdfic,vinfkm)

w = xmdfic*s% Kudritzki_wind_eta

! if (dbg) write(*,*) ’lg eval_Kudritzki_wind’, log10_cr(w)

end subroutine eval_Kudritzki_wind
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subroutine eval_Nieuwenhuijzen_wind(w)

! Nieuwenhuijzen, H.; de Jager, C. 1990, A&A, 231, 134 (eqn 2)

real(dp), intent(out) :: w

real(dp) :: log10w

include ’formats’

log10w = -14.02d0 + 1.24d0*log10_cr(L1/Lsun) +

0.16d0*log10_cr(M1/Msun) &
+ 0.81d0*log10_cr(R1/Rsun)

w = exp10_cr(log10w)

end subroutine eval_Nieuwenhuijzen_wind

end subroutine KNJNL_wind

A.2.10 Kudritzki et al., Nieuwenhuijzen et al., Hamann et al. – KNJH

subroutine wellstein_langer_wind(id, Lsurf, Msurf, Rsurf, Tsurf, w,

ierr)

use crlibm_lib

type (star_info), pointer :: s

integer, intent(in) :: id

real(dp), intent(in) :: Lsurf, Msurf, Rsurf, Tsurf ! surface values

(cgs)

! NOTE: surface is outermost cell. not necessarily at photosphere.

! NOTE: don’t assume that vars are set at this point.

! so if you want values other than those given as args,

! you should use values from s% xh(:,:) and s% xa(:,:) only.

! rather than things like s% Teff or s% lnT(:) which have not been

set yet.

real(dp), intent(out) :: w ! wind in units of Msun/year (value is >=

0)

integer, intent(out) :: ierr

real(dp) :: L1, M1, R1, T1, xsurf, Y, Z, etaWR, etaCOOL, etaHOT

real(dp) :: log10w

call get_star_ptr(id,s,ierr)

w = 0

ierr = 0

L1 = Lsurf

M1 = Msurf

R1 = Rsurf

T1 = Tsurf

etaHOT = s% x_ctrl(1)

s% Kudritzki_wind_eta = etaHOT

etaCOOL = s% x_ctrl(2)

etaWR = s% x_ctrl(3) !eta is the factor for WR winds

xsurf = s%xa(s% net_iso(iprot), 1)+ s%xa(s% net_iso(ih1), 1) !H

mass fraction of the outermost cell, species 1 being neutrons
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Y = s% xa(s%net_iso(ihe3),1) + s% xa(s%net_iso(ihe4),1)

if (xsurf .GE. 0.4d0) then
if (T1 .LT. 15000d0) then

print *, ’Lsurf=’, L1, ’Tsurf=’, Tsurf , ’Xsurf=’, xsurf,

’using: Nieuwenhuijzen’, etaCOOL

call eval_Nieuwenhuijzen_wind(w)

w = w * etaCOOL

else
print *, ’Lsurf=’, L1, ’Tsurf=’, Tsurf , ’Xsurf=’, xsurf,

’using: Kudritzki’, s% Kudritzki_wind_eta

call eval_Kudritzki_wind(w)

end if
else !the thing is a WR star

print *, ’Lsurf=’, L1, ’Tsurf=’, Tsurf , ’Xsurf=’, xsurf, ’using:

manual Hamann’, etaWR

if (log10_cr(L1/Lsun) .LE. 4.5d0) then
log10w = -35.8d0 + 6.8d0*log10_cr(L1/Lsun)

w = exp10_cr(log10w)* etaWR

else
log10w = -11.95d0 + 1.5d0*log10_cr(L1/Lsun) - 2.85d0*(xsurf)

w = exp10_cr(log10w)* etaWR

end if
end if

contains

subroutine eval_Nieuwenhuijzen_wind(w)

! Nieuwenhuijzen, H.; de Jager, C. 1990, A&A, 231, 134 (eqn 2)

real(dp), intent(out) :: w

real(dp) :: log10w

include ’formats’

log10w = -14.02d0 + 1.24d0*log10_cr(L1/Lsun) + &
0.16d0*log10_cr(M1/Msun) + &
0.81d0*log10_cr(R1/Rsun)

w = exp10_cr(log10w)

! if (dbg) then

! write(*,1) ’Nieuwenhuijzen log10 wind’, log10w

! end if

end subroutine eval_Nieuwenhuijzen_wind

subroutine eval_Kudritzki_wind(w)

use mod_kuma, only: kuma

real(dp), intent(inout) :: w

real(dp) :: xlogl, xlteff, stmass, xsurf, xmdfic, vinfkm

xlogl = log10_cr(L1/Lsun)

xlteff = log10_cr(T1)

stmass = M1/Msun
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xsurf = s% xa(2,1)

! output xmdfic = mass loss rate [Msun/yr]

! output vinfkm = v_infinity

call kuma(xlogl,xlteff,stmass,xsurf,xmdfic,vinfkm)

w = xmdfic*s% Kudritzki_wind_eta

! if (dbg) write(*,*) ’lg eval_Kudritzki_wind’, log10_cr(w)

end subroutine eval_Kudritzki_wind

end subroutine wellstein_langer_wind

A.2.11 Kudritzki et al., van Loon et al., Hamann et al. – KvLH

subroutine KvLH_wind(id, Lsurf, Msurf, Rsurf, Tsurf, w, ierr)

use crlibm_lib

type (star_info), pointer :: s

integer, intent(in) :: id

real(dp), intent(in) :: Lsurf, Msurf, Rsurf, Tsurf ! surface values

(cgs)

! NOTE: surface is outermost cell. not necessarily at photosphere.

! NOTE: don’t assume that vars are set at this point.

! so if you want values other than those given as args,

! you should use values from s% xh(:,:) and s% xa(:,:) only.

! rather than things like s% Teff or s% lnT(:) which have not been

set yet.

real(dp), intent(out) :: w ! wind in units of Msun/year (value is >=

0)

integer, intent(out) :: ierr

real(dp) :: L1, M1, R1, T1, xsurf, Y, Z, etaHOT, etaCOOL, etaWR

real(dp) :: log10w

call get_star_ptr(id,s,ierr)

w = 0

ierr = 0

L1 = Lsurf

M1 = Msurf

R1 = Rsurf

T1 = Tsurf

etaHOT = s% x_ctrl(1)

s% Kudritzki_wind_eta = etaHOT

etaCOOL = s% x_ctrl(2)

etaWR = s% x_ctrl(3)

xsurf = s%xa(s% net_iso(iprot), 1)+ s%xa(s% net_iso(ih1), 1) !H

mass fraction of the outermost cell, species 1 being neutrons

Y = s% xa(s%net_iso(ihe3),1) + s% xa(s%net_iso(ihe4),1)

Z = 1- xsurf - Y

if (xsurf .GE. 0.4d0) then
if (T1 .LT. 15000d0) then

print *, ’Lsurf=’, L1, ’Tsurf=’, Tsurf , ’Xsurf=’, xsurf,

’using: van loon’, etaCOOL
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call eval_van_Loon_wind(w)

w = w * etaCOOL

else !hot star

print *, ’Lsurf=’, L1, ’Tsurf=’, Tsurf , ’Xsurf=’, xsurf,

’using: Kudritzki’, s% Kudritzki_wind_eta

call eval_Kudritzki_wind(w)

end if
else !the thing is a WR star

print *, ’Lsurf=’, L1, ’Tsurf=’, Tsurf , ’Xsurf=’, xsurf, ’using:

Hamman’, etaWR

if (log10_cr(L1/Lsun) .LE. 4.5d0) then
log10w = -35.8d0 + 6.8d0*log10_cr(L1/Lsun)

w = exp10_cr(log10w)* etaWR

else
log10w = -11.95d0 + 1.5d0*log10_cr(L1/Lsun) - 2.85d0*(xsurf)

w = exp10_cr(log10w)* etaWR

end if

end if

contains

subroutine eval_Kudritzki_wind(w)

use mod_kuma, only: kuma

real(dp), intent(inout) :: w

real(dp) :: xlogl, xlteff, stmass, xsurf, xmdfic, vinfkm

xlogl = log10_cr(L1/Lsun)

xlteff = log10_cr(T1)

stmass = M1/Msun

xsurf = s% xa(2,1)

! output xmdfic = mass loss rate [Msun/yr]

! output vinfkm = v_infinity

call kuma(xlogl,xlteff,stmass,xsurf,xmdfic,vinfkm)

w = xmdfic*s% Kudritzki_wind_eta

! if (dbg) write(*,*) ’lg

eval_Kudritzki_wind’, log10_cr(w)

end subroutine eval_Kudritzki_wind

subroutine eval_van_Loon_wind(w)

! van Loon et al. 2005, A&A, 438, 273

real(dp), intent(out) :: w

real(dp) :: log10w

include ’formats’

log10w = -5.65d0 + 1.05*log10_cr(L1/(1d4*Lsun)) -

6.3d0*log10_cr(T1/35d2)

w = exp10_cr(log10w)

end subroutine eval_van_Loon_wind
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end subroutine KvLH_wind

A.2.12 Kudritzki et al., van Loon et al., Nugis & Lamers – KvLNL

subroutine KvLNL_wind(id, Lsurf, Msurf, Rsurf, Tsurf, w, ierr)

use crlibm_lib

type (star_info), pointer :: s

integer, intent(in) :: id

real(dp), intent(in) :: Lsurf, Msurf, Rsurf, Tsurf ! surface values

(cgs)

! NOTE: surface is outermost cell. not necessarily at photosphere.

! NOTE: don’t assume that vars are set at this point.

! so if you want values other than those given as args,

! you should use values from s% xh(:,:) and s% xa(:,:) only.

! rather than things like s% Teff or s% lnT(:) which have not been

set yet.

real(dp), intent(out) :: w ! wind in units of Msun/year (value is >=

0)

integer, intent(out) :: ierr

real(dp) :: L1, M1, R1, T1, xsurf, Y, Z, etaHOT, etaCOOL, etaWR

real(dp) :: log10w

call get_star_ptr(id,s,ierr)

w = 0

ierr = 0

L1 = Lsurf

M1 = Msurf

R1 = Rsurf

T1 = Tsurf

etaHOT = s% x_ctrl(1)

s% Kudritzki_wind_eta = etaHOT

etaCOOL = s% x_ctrl(2)

etaWR = s% x_ctrl(3)

xsurf = s%xa(s% net_iso(iprot), 1)+ s%xa(s% net_iso(ih1), 1) !H

mass fraction of the outermost cell, species 1 being neutrons

Y = s% xa(s%net_iso(ihe3),1) + s% xa(s%net_iso(ihe4),1)

Z = 1 - Y - xsurf

if (xsurf .GE. 0.4d0) then
if (T1 .LT. 15000d0) then

print *, ’Lsurf=’, L1, ’Tsurf=’, Tsurf , ’Xsurf=’,

xsurf, ’using: van loon’, etaCOOL

call eval_van_Loon_wind(w)

w = w * etaCOOL

else !hot star

print *, ’Lsurf=’, L1, ’Tsurf=’, Tsurf , ’Xsurf=’,

xsurf, ’using: Kudritzki’, s% Kudritzki_wind_eta

call eval_Kudritzki_wind(w)
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end if
else !the thing is a WR star

print *, ’Lsurf=’, L1, ’Tsurf=’, Tsurf , ’Xsurf=’,

xsurf, ’using: Nugis & Lamers’, etaWR

w = 1d-11 * pow_cr(L1/Lsun,1.29d0) * pow_cr(Y,1.7d0)

* sqrt(Z)
w = w * etaWR

end if

contains

subroutine eval_Kudritzki_wind(w)

use mod_kuma, only: kuma

real(dp), intent(inout) :: w

real(dp) :: xlogl, xlteff, stmass, xsurf, xmdfic, vinfkm

xlogl = log10_cr(L1/Lsun)

xlteff = log10_cr(T1)

stmass = M1/Msun

xsurf = s% xa(2,1)

! output xmdfic = mass loss rate [Msun/yr]

! output vinfkm = v_infinity

call kuma(xlogl,xlteff,stmass,xsurf,xmdfic,vinfkm)

w = xmdfic*s% Kudritzki_wind_eta

! if (dbg) write(*,*) ’lg eval_Kudritzki_wind’, log10_cr(w)

end subroutine eval_Kudritzki_wind

subroutine eval_van_Loon_wind(w)

! van Loon et al. 2005, A&A, 438, 273

real(dp), intent(out) :: w

real(dp) :: log10w

include ’formats’

log10w = -5.65d0 + 1.05*log10_cr(L1/(1d4*Lsun)) -

6.3d0*log10_cr(T1/35d2)

w = exp10_cr(log10w)

end subroutine eval_van_Loon_wind

end subroutine KvLNL_wind

A.2.13 Timestep Controls

integer function extras_finish_step(s, id, id_extra)

use crlibm_lib

type (star_info), pointer :: s

integer, intent(in) :: id, id_extra

integer :: ierr, k

real(dp) :: time, mdot_timescale, rad_diff_env,
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rad_process_timescale, random_walk_num_step

real(dp) :: env_R, env_mfp, R_core, deltaR, env_M, M_core, tmp

real(dp) :: mean_rho, mean_op

call system clock(time1,clock_rate)
time = dble(time1-time0)/ clock_rate / 60 ! elapsed time in minutes

extras_finish_step = keep_going

call store_extra_info(s)

!Uncomment this to run on the Zwicky Cluster when the run time is

limited to 12 hours

!if (time .GT. 715) then !715 min = 11h:55min

! call output(id, ierr) !to save a photo

! extras_finish_step = terminate

! print *, ’Terminated because maximum time reached’

!end if

call get_star_ptr(id,s,ierr)

s% lxtra1 = .false.
if (s% xa(s%net_iso(io16),s%nz) .LT. 0.04) then

if (s%xa(s%net_iso(isi28), s%nz) .GT. 0.01) then !O

depletion: X_o16 < 0.04 in the center and si28 has been

produced

extras_finish_step = terminate

s%lxtra1 = .true.
if ((s%lxtra1_old .eqv. .false.) .AND. (s% lxtra1 .eqv.

.true.)) then
call output(id, ierr) !to save a photo

end if
end if

end if

!control that the next timestep is smaller than the relevant

timescales!

rad_process_timescale = 1d-8 !in sec = (avg mfp)/c =

1/(opacity*rho*c) ~ 1/(0.1*c) ~ 1d-8

! find the envelope boundary

k = s% nz

do while (s% m(k) / Msun .LT. s% mass_conv_core) !in Msun

k = k-1

end do
R_core = s% r(k) / Rsun !in Rsun

M_core = s% m(k) / Msun

R_core = max(R_core, s% he_core_radius) !in Rsun

M_core = max(M_core, s% he_core_mass) !in Msun

!he_core_radius is the radius where H drops below 0.01

!print *, "R_core=", R_core, s% he_core_radius
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!print *, "M_core=", M_core

env_R = s% r(1) / Rsun - R_core !in Rsun

env_M = s% mstar /Msun - M_core !in Msun

env_M = env_M * Msun !in grams

! r(1) is the radius of the surface

!print *, "env_R", env_R

!print *, "should be 1", (env_R + R_core) / (s% r(1) / Rsun)

if (env_R /= 0) then
k = s% nz

do while ((s% r(k) / Rsun .LT. R_core))

k = k-1 !move outward

end do !at the end of the loop k is the index of the

first cell of the envelope

!print *, s% r(k)

mean_rho = 0

mean_op = 0

tmp = 0

!print *, k, R_core

do while (k .GE. 1)

!print *, s% opacity(k)

if (k == s% nz) then
deltaR = s%r(k) !in cm

tmp = tmp + deltaR / s% csound(k) !in sec

! evaluate the mean opacity and density in the envelope

weighting by the radius

mean_op = mean_op + s% opacity(k) * s% r(k)

mean_rho = mean_rho + s% rho(k) * s% r(k)

else !means we are not in the central cell

deltaR = s% r(k) / Rsun - s% r(k+1) / Rsun

deltaR = deltaR * Rsun !in cm

!print *, deltaR, deltaR / s% csound(k)

! evaluate the mean opacity and density in the envelope

weighting by the radius

tmp = tmp + deltaR / s% csound(k) !in sec

mean_op = mean_op + s% opacity(k) * ((s% r(k)/ Rsun &
- s% r(k+1) / Rsun )) * Rsun

mean_rho = mean_rho + s% rho(k) * ((s% r(k)/ Rsun &
- s% r(k+1) / Rsun )) * Rsun

end if
k = k-1

!print *, tmp

end do
mean_rho = mean_rho / (env_R * Rsun) !normalization

mean_op = mean_op / (env_R * Rsun) !normalization

!print *, "mean_rho_cgs =", mean_rho, "mean_op_cgs =", mean_op

env_R = env_R * Rsun !in cm

env_mfp = 1d0 / (mean_rho * mean_op) !in cm

random_walk_num_step = (env_R/env_mfp)**2 !pure number
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!print *, "random_walk_num_step=", random_walk_num_step

rad_diff_env = rad_process_timescale * random_walk_num_step !in

sec

!print *, ’env_mfp=’, env_mfp

!print *, ’rad_diff_env=’, rad_diff_env

else !there isn’t an envelope anymore (unlikely), set this to

infinite so that they don’t limit the timestep

rad_diff_env = 1d99

!print *, "where is my envelope?"

end if

mdot_timescale = s% mstar / (1d0 * abs(s% mstar_dot)) ! in sec

!print *, "proposed dt_next [yr]", s% dt_next / secyer

!dt_next must be in seconds, but for numerical stability the min

! must be evaluated with stuff in years

s% dt_next = min(s% dt_next / secyer , s% kh_timescale, &
mdot_timescale / secyer, &
s% nuc_timescale, &
s% chem_timescale , &
rad_diff_env / secyer)

!print *, s% dt_next

s% dt_next = s% dt_next * secyer

if (min(s% dt_next / secyer , s% kh_timescale, &
mdot_timescale / secyer, &
s% nuc_timescale, &
s% chem_timescale , &
rad_diff_env / secyer) &
== s% kh_timescale ) then

print *, "dt_next limited by kh_timescale"

else if (min(s% dt_next / secyer , s% kh_timescale, &
mdot_timescale / secyer, &
s% nuc_timescale, &
s% chem_timescale , &
rad_diff_env / secyer) &
== mdot_timescale / secyer ) then

print *, "dt_next limited by mdot_timescale"

else if (min(s% dt_next / secyer , s% kh_timescale, &
mdot_timescale / secyer, &
s% nuc_timescale, &
s% chem_timescale , &
rad_diff_env / secyer) &
== s% dynamic_timescale / secyer ) then

print *, "dt_next limited by dynamic_timescale"

else if (min(s% dt_next / secyer , s% kh_timescale, &
mdot_timescale / secyer, &
s% nuc_timescale, &
s% chem_timescale , &
rad_diff_env / secyer) &
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== s% nuc_timescale ) then
print *, "dt_next limited by nuc_timescale"

else if (min(s% dt_next / secyer , s% kh_timescale, &
mdot_timescale / secyer, &
s% nuc_timescale, &
s% chem_timescale , &
rad_diff_env / secyer) &
== s% chem_timescale * secyer) then

print *, "dt_next limited by chem_timescale"

else if (min(s% dt_next / secyer , s% kh_timescale, &
mdot_timescale / secyer, &
s% nuc_timescale, &
s% chem_timescale , &
rad_diff_env / secyer) &
== rad_diff_env / secyer) then

print *, "dt_next limited by rad_diff_env"

end if

!print *, "next timestep in years:", s% dt_next / secyer

!print *, "log_dt_next", log10_cr(s% dt_next / secyer)

contains

subroutine output(id, ierr)

! use star_utils, only: get_name_for_restart_file

use crlibm_lib

interface
subroutine save_restart_info(iounit, id, ierr)

integer, intent(in) :: iounit

integer, intent(in) :: id

integer, intent(out) :: ierr

end subroutine save_restart_info

end interface
integer, intent(in) :: id

integer, intent(out) :: ierr

character (len=256) :: filename, num_str, fstring, modname

type (star_info), pointer :: s

integer :: num_digits

call get_star_ptr(id, s, ierr)

if (ierr /= 0) return
num_str = ’photo_11h55min’

if (ierr /= 0) return
if ((s% xa(8,s%nz) .LT. 0.04) .AND. (s%xa(11, s%nz) .GT. 0.01))

then !O depletion: X_o16 < 0.04 in the center and si28 has

been produced

num_str = ’photo_O_depl’
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call star_write_model(id, ’O_depl.mod’ , ierr)

end if

filename = trim(s% photo_directory) // ’/’ // trim(num_str)

s% need_to_save_profiles_now = .true.
s% save_profiles_model_priority = 10

call output_to_file(filename, id, ierr)

end subroutine output

subroutine output_to_file(filename, id, ierr)

use utils_lib, only:alloc_iounit, free_iounit

use model_out, only:output_star_model
character (len=*) :: filename

integer, intent(in) :: id

integer, intent(out) :: ierr

integer :: iounit, k

type (star_info), pointer :: s

character(len=256) :: iomsg

include ’formats’

call get_star_ptr(id, s, ierr)

if (ierr /= 0) return

iounit = alloc_iounit(ierr); if (ierr /= 0) return
open(iounit, file=trim(filename), action=’write’, &
status=’replace’, iostat=ierr, iomsg=iomsg, form=’unformatted’)

if (ierr == 0) then
s% most_recent_photo_name = trim(filename)

call output_star_model(s, iounit)

close(iounit)
else

write(*,*) trim(iomsg)

endif
call free_iounit(iounit)

end subroutine output_to_file

end function extras_finish_step

A.2.14 run star extras.f for the Simplified Envelope Shedding Events

Stopping Criterion

The run star extras.f used for the study of impulsive mass loss events do not use cus-
tomized routines different from those of the wind study. The only exception is the stop-
ping criterion for the MCE serie, c.f Tab. 2.3. MESA does not include settings to control the
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run based on the extent of the convective envelope, therefore, the MCE condition must be
checked using the extras check model routine in the run star extras.f.

integer function extras_check_model(s, id, id_extra)

type (star_info), pointer :: s

integer, intent(in) :: id, id_extra

integer :: k, j

real(dp) :: relv,surf_v,loc_v

logical set_surf

set_surf = .true.
extras_check_model = keep_going

if(s%center_h1 == 0.0) then
do k=1, 150

surf_v = surf_v + s% conv_vel(k)

end do
surf_v=surf_v/150 !surf_v is the average convective velocity in

the outermost 150 cells

do k=2, s% nz

if ((s% conv_vel(k)==0.0).and.(s% mixing_type(k-1)==3)) then
!k is the cell of the lower boundary of a convective region

!mixing type = 3 => semiconvection

do j=1,150

loc_v= loc_v+ s% conv_vel(k-j)

end do
loc_v = loc_v/150

relv = abs((loc_v - surf_v)/surf_v)

if (relv.LT.0.1) then
extras_check_model=terminate

s% termination_code = t_xtra1

termination_code_str(t_xtra1)="made convective envelope"

return
end if

end if
end do

end if
! by default, indicate where (in the code) MESA terminated

if (extras_check_model == terminate) s% termination_code =

t_extras_check_model

end function extras_check_model

Mass Loss and Timestep Controls

The mass loss routine is the one for the Vink et al., de Jager et al., Nugis & Lamers – Vd-
JNL, presented in §A.2.1. The customized timestep control is enforced using the routine of
§A.2.13. The mass stripping is done by saving a model at the desired stripping point and
restarting it using the built-in MESA routine adjust mass, which is controlled using the
relax initial mass in the inlist used when restarting the simulation – see §A.1.2.
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From a naive use of MESA toward physically sound
Results

We have a habit in writing articles published in scientific journals to make the work as finished as
possible, to cover up all the tracks, to not worry about the blind alleys or describe how you had the
wrong idea first, and so on. So there really isn’t any place to publish, in a dignified manner, what

you actually did in order to get to do the work.
[R. Feynman, Nobel Lecture, December 11, 1965]

B.1 Warning to the Naive MESA User

MESA is a very well designed code that rarely crashes, forcing the new user to look for the
problem(s) to fix. Most of the time, MESA does not crash, but instead it is able to find a
solution, which – too often – may not be physically sound. The burden of understanding
the solutions MESA finds, and more importantly, of determining how realistic these are, is
left to the user. “MESA is a tool, not a theory”.

The aim of this appendix is to summarize part of the work I did to improve my results.
I focus on issues found in the evolution of non-rotating, solar metallicity, massive stars of
MZAMS ≤ 40M�, however the careful analysis of the results is needed for any problem the
code can handle. The take-home point is to not believe any result the MESA code can and will
produce, but analyze it very carefully each time. In my experience, MESA often converges to
unphysical solutions rather than crashing when something is wrong. Because of the non-
linearity of the equations for a stellar structure, a small inaccuracy in an aspect believed
to be secondary, might have rather significant effects. The aspect causing unexpected and
undesired behaviors may be very hard to individuate. Most of the work is left to do once a
numerical model has been found for the problem considered.

In §B.2 I describe the issue of unphysical oscillations of the stellar surface (see also §2.3),
which can be solved by using a more realistic determination of the outer boundary con-
dition. This provides an example of the effects that an inaccurate treatment of an aspect
initially thought to be secondary can have on the results. In §B.3, I describe the ongoing
work to improve the resolution of the stellar cores during late burning stages, emphasizing
the need for large nuclear reaction networks.
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RESULTS

B.2 Surface Oscillations

When using the default parameters of MESA for massive stars (see $MESA DIR/star/

inlist massive defaults), I find unphysical oscillations of the surface L, R, and Teff dur-
ing the late evolutionary stages of stars with MZAMS ≥ 20M� (as mentioned briefly in §2.3).
These oscillations in turn cause rapid and unphysical variations of the Ṁ, which is evaluated
as a function of some of the variables1 characterizing the stellar surface.

Figure B.1 shows an example of such oscillations for the luminosity of MZAMS = 30M�
models computed using the Vink et al., Nieuwenhuijzen et al., and Hamann et al. wind mass
loss scheme with different efficiencies.
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Figure B.1: Luminosity for 30M� models computed with the default simple atm boundary
condition. The oscillation shown are an unphysical, numerical effect.

These oscillations are most likely caused by the interaction of the MLT++ routine (see
§2.1.3) with the default outer boundary condition simple atm. They cannot be a real phys-
ical effect because of their extreme amplitude (note the logarithmic scale on the y-axis of
Fig. B.1), and their period, which does not match any of the relevant physical timescales of
the star.

Lower mass models (e.g. MZAMS = {12 , 15}M�) that do not need MLT++, do not show
the oscillations. Moreover, by changing the boundary condition they can be damped and,
and if MZAMS ≤ 30M� eliminated, see Fig. B.2. In particular, the boundary condition I
used is the implementation of an Eddington-grey atmosphere, which is also more physically
accurate than simple atm, see §2.3 and the atm module in $MESA DIR/atm.

The presence of these oscillations also causes a major slowdown in the computation: the
code often struggles to find a solution, the timestep taken get increasingly smaller during the

1Which specific variables are used depends on the mass loss algorithm, see §1.4.
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evolution2, and MESA often needs to go a few step back to restart with a smaller timestep.
For example, the η = 1.0 model in Fig. B.2 (blue curve) reaches oxygen depletion after
252460 steps, of which 3032 are taken twice (i.e. they are MESA retry steps, re-taken with
a lower timestep because the first solution found exceeds some limiting controls), and 1124
times MESA needs to come back by two steps and restart from there with a lower timestep
(i.e. 1124 are MESA backups). For comparison, the corresponding model computed with
the setup described in §2.3 (i.e. using the Eddington-grey boundary condition and the local
refinements of the mesh instead of the simple atm and no refinements; see also §A.2.4 and
§A.2.13) reaches oxygen depletion in 20876 steps, of which only 38 are retry steps, and 13
are backup steps. The luminosity of this model is the blue curve in Fig. B.2.
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Figure B.2: Luminosity for 30M� models computed with the Eddington grey outer bound-
ary condition, and with the “local mesh refinements” described in §2.3. The use of a better
set of parameters, namely a better determination of the outer boundary condition, can elim-
inate non-physical features seen with the default set of parameters, cf. Fig. B.1.

This example illustrates that the default parameters suggested (see files in $MESA DIR/

star/defaults) are not always suitable for the study of a particular problem, and they may
cause unphysical effects that are sometimes very hard to detect. The careful analysis of the
parameters used, also of those that are not of primary interest for the target research topic,
can often help in the detection and solution of (potential) numerical issues. Some unphysical
effects may be visible only in plots of particular planes and using appropriate scales (e.g.
(L,t), using a logarithmic scale for t for this example), otherwise they may remain hidden.
The bottom line is to never assume that the MESA default parameter are suitable.

2If MZAMS ≥ 35M�, they can be so small that it is impossible compute further than helium depletion.
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B.3 On the Resolution at high Temperatures

B.3.1 Introduction to the Problem

The modeling of the late burning stages in the core of massive stars is particularly challeng-
ing, see also §1.3.2. The number of active isotopes in the nuclear processes and the burning
rates increase with the temperature. Often forward and backward reactions nearly balance
each others, justifying quasi-equilibrium approximations for the very late burning stage, e.g.
Quasi Statistical Equilibrium (QSE) during silicon burning (see §1.3.2, and, e.g. [3, 11, 12]).

The MESA approach for silicon burning does not rely on the quasi-equilibrium approxi-
mation, since the code is designed to solve the fully coupled set of equations for the structure
and composition of the star. Instead, the equation for the abundances (cf. Eq. 2.9) is solved
dividing the timestep in many sub-steps and going to higher orders with the Bulirsch-Stoer
algorithm [103]. This means that MESA does not assume that forward and backward reac-
tions cancel out, and all the active isotopes which can possibly react must be followed indi-
vidually in the nuclear reaction network3. This implies a major slowdown of the computa-
tion for these stages. The results of this different approach, not relying on quasi-equilibrium
approximations, is still in a testing phase.
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Figure B.3: One zone nuclear burning calculation with a 299-isotope non-QSE MESA net-
work at constant T and ρ. Compare this figure to Fig. 3a of [12].

Figure B.3 shows the evolution of the abundance of some heavy nuclei as a function of
the abundance of elements of the silicon group, 24 ≤ A ≤ 44, [12], computed with a 299-
isotope network. The computation is carried out following the work of Hix et al., in a single
zone model at constant temperature and density. The results of the large, non-QSE MESA
network are in remarkable agreement with the QSE-network results of Hix et al.

3Of course, the conditions in the core of a massive star cannot be reproduced on Earth, therefore, the number
of active isotopes (which may be very short-lived) must be determined theoretically.
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Moreover, the details of neutrino cooling and convective mixing (including overshooting)
are paramount to obtain realistic core structures – which, in turn, are paramount for the SN
explosion mechanism studies. These rely on stellar evolution calculations for the initial
conditions. The proper resolution of these phenomena, both in the spatial and temporal
domain, is a difficult problem. Variations can be very fast, requiring timesteps that can reach
∼ 1 second of physical time during silicon burning. The spatial grid used must be very fine
to be sure of not under-resolving temperature gradients that regulate the convective mixing.

B.3.2 Need for a large Nuclear Reaction Network

The definition of “large” depends on the precise burning stage considered: realistic simu-
lations of carbon, neon, oxygen or silicon burning require different minimum numbers of
isotopes. This even if the details of the nucleosynthesis are not of direct concern for the
research carried out: a large nuclear network is needed to obtain a realistic structure of the
core – even if the details of the composition are not of primary interest.

There are two main reasons why large nuclear reaction networks are needed in the sim-
ulation of late burning stages. The first is to have a realistic energy generation rate, and
the second is to obtain a realistic density structure, and particularly a realistic value of the
effective Chandrasekhar mass.
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Figure B.4: Nuclear burning power in a MZAMS = 30M� model. The vertical dot dashed
lines indicate approximately the end of hydrogen, helium, carbon and neon burning, re-
spectively. The model is stopped at oxygen depletion, see Eq. 2.21.

Figure B.4 shows the power from nuclear reactions (excluding neutrinos),

Lnuc =
∫ Mtot

0
εnucdm , (B.1)
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in a non-rotating, solar metallicity, MZAMS = 30M� model4, with a 21-isotope nuclear net-
work (approx21.net, red curve), and with a 67-isotope nuclear network (mesa 67.net, blue
curve). The agreement between the two network is generally satisfying roughly until carbon
depletion, however, the inclusion of more isotopes creates a large difference in the power re-
leased during neon burning, and later on during oxygen burning. Note that nothing ensures
that the blue curve (i.e. the 67-isotope network) is itself realistic, even if it is generally ac-
cepted that ∼ 50 isotopes are sufficient for obtaining the proper energy release from oxygen
burning (Arnett, private communication).

The hypothesis of quasi-statistical equilibrium, commonly adopted for silicon burning,
does not hold yet at carbon depletion. The approach5 of switching from a small nuclear
reaction network to a large (QSE) network at oxygen depletion (e.g. [14, 18, 19]) can and
should be improved, for example, by switching to progressively larger networks during
and post-carbon burning.

The second reason to use a large nuclear reaction network, is to have a realistic den-
sity structure and effective Chandrasekhar mass of the iron core formed at the end of the
evolution. This does not concern the simulations presented in §3, since these terminates at
oxygen depletion, long before the formation of the iron core. However, this is relevant for
the simulations presented in §4.

The isotopes present in the core of a massive star determine the fine details of the density
structure, since the EOS depends on the mean molecular weight. Moreover, the neutroniza-
tion of matter can be treated self-consistently only if the nuclear network adopted includes
the many short-lived, neutron-rich isotopes that can form Therefore the central Ye can vary
significantly changing the isotopes included in the nuclear reaction network, and this is
of paramount importance for the determination of the effective Chandrasekhar mass, see
Eq. 1.7.

For instance, approx21.net does not include the many neutron rich isotopes involved in
silicon burning, and treats neutronization with a single compound reaction (Eq. 2.23), see
§2.4. This produces a predetermined central Ye(r = 0) ≡ Ye(56Cr) = 0.428 at the onset of
core collapse. Note that this is the only value that approx21.net can yield6. Calculations
with larger networks including hundreds of active isotopes may and do yield different (of a
few percent) Ye values. For example, a MZAMS = 25M�, solar metallicity star computed
with approx21.net until oxygen depletion, and then restarted from there with the 201-
isotope network mesa 201.net reaches the onset of core collapse with Ye(r = 0) ' 0.423.
Although the difference between the approx21.net and the larger nuclear reaction network
Ye values may seem small, it is extremely relevant for the determination of the effective
Chandrasekhar mass (Eq. 1.7), the compactness parameter (Eq. 3.1) and therefore “explod-
ability” of the star.

4This model uses the Vink et al., de Jager et al., and Nugis & Lamers (VdJNL) wind scheme with η = 1.0.
5This approach is also the original motivation to stop the simulations carried out in this work at oxygen

depletion.
6MESA includes also modified version of approx21.net, that substitute the isotope produced by the com-

pound electron-capture reaction, 56Cr, with other isotopes, possibly of other elements. This allows to obtain
different (but still pre-determined and fixed) values of the central Ye at the onset of core collapse. For more
details, see $MESA DIR/data/net datanets.
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B.3.3 Spatial Resolution of the Core

Because of the high sensitivity of the core structure to the details of the physics included
in the simulations, it is hard to find results that are robust against variations of the spatial
and/or temporal discretization.

In §3.1.1, I present the compactness parameter at oxygen depletion, ξ
O depl
2.5 , as an example

of results that cannot yet be trusted. This because of their dependence on the numerical
discretization used in the simulations. The dependence is of course not physical (nature
does not need to discretize space and time to produce stars, as computers do), and must be
eliminated to discuss the physics determining ξ

O depl
2.5 .

Together with Fig. 3.8, Fig. B.5 illustrates the problem found (in the worse case scenario).
Any variation of the parameters used for the simulation (e.g. nuclear reaction network, res-
olution coefficient mesh delta coeff, timestep, etc...) causes a variation of the spatial dis-
cretization, and consequently of the gradients in the stellar structure. Such variation can
either be a direct (e.g. when I modify mesh delta coeff) or an indirect consequence (e.g.
when the nuclear reaction network is changed, the amount of energy released and the loca-
tion of the energy release may vary slightly, causing a displacement of the finer portions of
the mesh) of the parameters choice.

The agreement between the evolutionary tracks of Fig. B.5 is satisfying until Tc ' 1.3×
109 K, i.e. until after MESA starts to artificially damp the mass loss (see §2.3). This ensures
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Figure B.5: Evolutionary tracks on the (ρc, Tc) plane for MZAMS = 30M� stars computed
with the Vink et al., de Jager et al., Nugis & Lamers mass loss rate combination and η = 1.0.
This is one of the worst cases computed among the many tests carried out. The blue curve
corresponds to the MZAMZ = 30M� model computed with the above algorithm presented
in §3. To compute the green curve I changed the nuclear network to mesa 67.net. The red
and cyan curves are computed with the same parameters as the green curve, except for the
resolution, which is roughly 3 and 5 times higher, respectively.
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that the results shown in §3 are not influenced by the poorly resolved core structure, except
the values of the compactness parameter, as already underlined in §3.1.1. At very high
temperatures, the evolutionary tracks depart from each other in an apparently chaotic way.
The amplitude of these deviations is striking.

In principle, these non-converging deviations would be easy to eliminate, by forbidding
any re-mesh procedure when T & 1.3× 109 K somewhere in the star. However, this would
not be a solution: given the sensitivity of the results to variations of some parameters, noth-
ing assures that one of the curves in Fig. B.5 corresponds to a realistic evolutionary track.
The structure of these simulated cores is not robust.

Moreover, this provides another example of untrustworthy results obtained without any
crash and/or warning from the MESA code. If I had not tried to vary the resolution, and if
I had not investigated the evolutionary tracks on the (ρc, Tc) plane, I would not have found
this problem. Even if resolution studies are extremely time consuming, they are strongly
advised for any problem analyzed.

The reason for the departure of the curves in Fig. B.5 is not known yet, and work to
understand it and fix the problem is still in progress. The stubborn tightening of the local
mesh refinements described in §2.3 has proven not to be sufficient to solve the problem.
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