Convection
It is a thermal instability that allows for energy transport through macroscopic motion of matter, resulting in a mom-zero every flux and a net-zeo matter fox.
Q: what are the energy transport mechanism in stars?
A: - radiation (photons carry evergy)

- convection
- conduction (electrons carry evergy, important eg. in WD)

We care define a timescale for convection:
convective turnover timescale: $\tau_{\text {convex }} \simeq \Delta R / v_{\text {comr }}$
Q: To what timescale of the star do you think this will be proportional to? (fre-fall? Thermal? nuclear?)
A : Since convection is a thermal instability, $\tau_{\text {cons }} \Sigma \tau_{\text {thermal }}$ with a small proportionality constant.
Convective stability: the Schwarzsalib criterion
Given that convection is an instability, we expect it to develop when other energy transport means are insufficient to carry the energy flux. While we still have many pen questions on how convection turns om/off and on how to properly nodelit, we can easily work out a STABILITY CRITERION.
N.B. I will focus on the simplest case of homogeneous composition although there are went de bates on which stability anterion to consider an case of compositional gradients.
$\left.T_{1}, P_{1}, p_{1}, T, P, p\right)$ The bubble picture :
to derive a stability criterion, Pets perturb am element of gas and see how' it reacts.
Initially it's in equilibrium with the environ
$P_{0} T_{0}, \rho_{Q_{0}}$
background at the new
and the bubble has T1, p' yet unknown
Since convection is a thermal instability, we cam assume hydro static balance between the bubble and the environment. If this weren't the case, the pressure difference would lead to expansion contractor at the sand s peed to restore Presrbalance an a sound-crossing (ie. dynamical) timescale.

$$
\Rightarrow P^{\prime}=P_{1} \quad \text { (or } P_{\text {bubble }} \equiv P_{\text {enviroment }} \text { throughout). }
$$

Now let's calculate the density. We can assume l is small, and to $1^{\text {st }}$ order:

$$
\rho^{\prime}=\rho_{0}+\left.\frac{d \rho}{d z}\right|_{a d}
$$

Where we use the ADIABATIC gradent assuming the bubble does not exchange evergy with the environment. For the environment

$$
\rho_{1}=\rho_{0}+\left.\frac{d \rho}{d z}\right|_{e n v} \ell \equiv \rho_{0}+\left.\frac{d \rho}{d z}\right|_{\mathrm{rad}} l
$$

Because we assume radiative transport do mimates in the background before (eventually, if receded) convection develops
$\frac{\text { INSTABILITY CONDITION: the buoyancy would continue to }}{\text { ID P }}$ posh the bubble further ip
This requires the bubble to be less dense than the environment after the displacement, or in other words hatter

$$
\rho^{\prime}<\rho_{1} \Rightarrow
$$

$$
\left.\frac{d \rho}{d z}\right|_{\mathrm{ad}}<\left.\left.\frac{d \rho}{d z}\right|_{\operatorname{env}} \simeq \frac{d \rho}{d z}\right|_{\mathrm{rad}}
$$

Using an equation of state $P \equiv P(p, T, \mu)$ we can rewrite this in terms of temperature gradients) and it is typically convenient to use Pinsteod of z as independent variable. After some algebra, assuming homogeneous Chemical composition:

$\left.$| CONVECTIVE
 INSTABILITY$\quad \nabla_{\text {ad }}<\nabla_{\text {rad }}$ |
| :--- | | Schwarzschild |
| :--- |
| criterion | \right\rvert\,

If one allows for variations in composition, there is another term on the left $\left(\nabla_{\mu}=\partial \log (\mu) / \partial \log (P)\right)$

$$
\left.\left.\begin{array}{l}
\text { CONVECTIVE } \\
\text { INSTABILITY }
\end{array} \Leftrightarrow \nabla_{a d}+\frac{\varphi}{\delta} \nabla_{\mu}<\nabla_{\text {rad }} \right\rvert\, \begin{array}{l}
\text { Ledoux } \\
\text { criterion }
\end{array}\right]
$$

Although there is now debate on whether on timescales of thousands of convective turnover timescales these differ.
If a layer is Ledoux-stable but Schmarzschild mutable we call the resulting instability SEMI CONVECTION
While Ledoux-unstable bit Schnarzschill stable is referred to as therm mohalime mixing.
Note that these cam occur (maybe) in stars, but also atmosphere and Oceans on Earth.
Take home point
\Rightarrow the density gradient in the star becomes too steep (i.e. steeper than adiabatic), then radiative diffusion carnet carry the energy flux and any small perturbation will result in a convective mstabilit

Convective energy flux: to calculate that, we meed to solve for the dynamics of the bubbles, which happens on timescales rebated to the thermal timescale it's not even really possible in general. Erika Bohm-Viteuse (1957) developed to this and a MEAN FIELD THEORY TO DESCRIBE THE SPACE- and TIME-AVERAGED state reached by a convective layer AFTER THE INSTABIUTY SATURATES Example: convection is what allows seff-sustaired flames (convective motion refuels of oxygen the payer where oxydoreduction reactions happen) MLT is le averaging in tire and space the flame Assuming some ergodicity, it's pike describing the spatial average of a picture of a cross section of the flame. Q: Before going into the details you cam maybe gers where this model is insufficient?

- Timescales short compared to Tcouv (no time to reach the average steady state described bp M(T)
- convective boundaries (far from average Payers)

To calculate Fconv, pet's consider the excesstemperature of a "bubble" (ie. a thermal flax tube), which raises adiabatically w.r.t. the environment:

$$
T_{\text {bubble }}-T_{\text {env }} \simeq\left(T_{0}+\left.\frac{d T}{d r}\right|_{\text {bubble }} l\right)-\left(T_{0}+\left.\frac{d T}{d r}\right|_{\text {eur }} l\right)=\left(\nabla_{a d}-\nabla_{\text {eur }}\right) \cdot l
$$

Multiplying by the specific heat and density, we obtain the thermal energy difference camied by the "bubble" (per unit volume)

$$
\Delta E_{\text {thermal }} / V_{\text {vol }}=c_{p} \rho\left(\nabla_{a d}-\nabla_{\text {euv }}\right) l
$$

Q: Why do we use the specific heat at constant pressure C_{p} ? = We assume pressure equilibrium, between the bubble and enviromat (even if op changes a cross the bubble ravel path l)

And multiplying by the bubble velocity (the "convective velocity", which is the average speed of thermal energy flux tubes) we obtain the heat flux cared by convection:

$$
F_{\text {conv }}=c_{p} p\left(\nabla_{a d}-\nabla_{\text {env }}\right) l v_{\text {can }}
$$

However, we are taking ($\nabla_{\text {ad }}-\nabla_{\text {Inv }}$) across the whole travel path l, on average the temperature difference is only $\sim 1 / 2$ of that But on average for each bubble raising and finding itself hotter, there will be ore sinking and finding itself colder, thus extracting heat from the sumoundirg and contributing the same amount to the flux.
We have 2 poorly known things: the distance travelled by the bubbles om average (before they transfer their excess/defect in thermal every and dissolve), and their velocity.
To calculate the convective velocity, we can calculate the work done by the buoyomicy on the bubble.
The density difference of the bubble to environment is

$$
\begin{aligned}
\rho_{\text {able }}-\rho_{\text {eur }} & \left.=\left(\rho_{0}+\left.\frac{d \rho}{d r}\right|_{\text {ad }} ^{l}\right)-\left(\rho_{0}+\left.\frac{d \rho}{d r}\right|_{\text {lev }}\right){ }_{\mathrm{l}}\right) \begin{array}{c}
\text { EOS and definition } \\
\text { of } \nabla_{i}
\end{array} \\
& =\frac{\rho}{T}\left(\nabla_{\text {ad }}-\nabla_{\text {env }}\right) l
\end{aligned}
$$

\Rightarrow Multiplying by $\frac{1}{2} \mathrm{~g}$ we get the average buoyancy force acting on the bubble across the travel

$$
B \simeq \frac{1}{2} g \frac{\rho}{T}\left(\nabla_{a d}-\nabla_{\operatorname{lnv}}\right) e
$$

$$
\text { NB: } g \equiv g(r)=-\frac{G m(r)}{r^{2}}
$$

and $\vec{B} \cdot \vec{l}$ is the work done on the bubble, which by energy conservation is equal t_{0} the bubble's Kinetic energy (because of the assumption $\nabla_{\text {bubble }}=\nabla_{\text {od }}$ there are no heat exchanges dining the adiabatic motion of the bubble):

$$
\begin{aligned}
& \text { NaB: }
\end{aligned}
$$

$$
\begin{aligned}
& Q=\text { upper limit dor amu ? Sound speed! o there wise pe sure batamce assumption and }
\end{aligned}
$$

Note that $v_{\text {couv }}$ and l appear squared, so this hold both pard and downward for bubbles. That relates vanu and l, leaving only ane unKnown for the convective flux: THE AVERAGE DISTANCE TRAVELLED BY A BUBBLE before it poses is excess heat, aka MIXING LENGTH THEORY.
Erika Bohme Vitense (1957) proposed

$$
l=\alpha H_{p} \text { with } H_{p}=-\frac{d r}{d \log (P)}
$$

and α the famous free parameter for the Mixing length theory, which means the bubble travel a portion of the pressure scale height.
Q: The boiling pasta pot: is it really convection? What carries the heat? Radiation is not the most important, conduction also matters at the beginning. However, the functional form of the conductive and radiative temperature gradient is the some (up to a change in opacity K): indeed at some point the pot becomes convectively unstable. But this is NOT the bubbles!!!
The bubbles in that pot are de to the water hiquid/vapor phase Transition. Ya con typically see convective flux as lille wiggles just before the phase transition Kicks in.
Summary of Key assumptions of Mixing Length Theory:

- environmental gradient is radiative $\left(\nabla_{\text {nv }}=\nabla_{\text {rad }}\right)$
- we model thermal flux tubes that camp a net thermal energy flux but a net zero mass flux as bubbles rising ADIABATICNIY and at instantaneous pressure equilibrium with the environment that Travel $l=\alpha H_{p}$ (om average) and with $\nabla_{\text {bubble }}=\nabla_{a d}$
- this allows for a description of the average mean energy flux carried by convection, where the convective flux is proportional to the superadiabaticity $\nabla_{a d}-\nabla_{r a d}$.

$$
\begin{aligned}
& \text { To the super a diabaliciy } F_{\text {comv }}=\frac{1}{4} \rho \rho\left(\frac{G_{m}(r)}{T r^{2}}\right)^{1 / 2}\left(\nabla_{a d}-\nabla_{\text {rad }}\right)^{3 / 2} l^{2} \| \text { CONVECTIVE }
\end{aligned}
$$

Super adiabaticity and the efficiency of convection
Convection is a rather strong instability, that is extremely efficient at camping evergy. As a result, the typical superadiabaticity in stars is very small:

$$
\nabla_{a d}-\nabla_{r a d} \lesssim 10^{-8} \quad \text { NB. }\left.\frac{d \log (T)}{d \log (P)}\right|_{i} \text { is dimensionless }
$$

\Rightarrow whenever convection is EFFICIENT the actual temperature gradient in a connectively unstable layer is approximately adiabatic. This is typical in stellar interior (eg. massive stars core). At the surface, where ρ is Pow, convection may be inefficient and the superadiabaticity is not of ways negligible

The elephant in the rom: TURBULENCE
Allegedly, Erika Bohm Vitense said if she were a ware of Kolmogorov work om' turbulence, she would not lave proposed MLT (it was during the cold war!!
A layer is turblent for large Reynolds numbers

$$
R_{e}=\frac{C V_{\text {con }}}{\nu}
$$

Since in stars ν (microscopic viscosity) is small, and in stellar interiors $l=\alpha H_{p}$ is very large, even for $v_{\text {conv }}=C_{S}$ (for which MLT would not hdd, $^{\text {m }}$, in particular the assumption of HSE) is typically enormous:
TURBULENT FLOWS ARE SUBSONIC BUT VERY TURBULENT, the "bubble picture" 15 AN OVERSIMPLIFICATION To describe the mean-field, time-average, thermal evergy flux cared by the complex turbulent flow.

Recalliradiative temperature gradient

$$
\frac{d T}{d r} a K \frac{L}{4 \pi r^{2}} \equiv k F_{r a d}
$$

\Rightarrow convection occurs where $d T / d r$ is steep (er than a adiabatic), which can occur if the radiative opacity K is high (photons are to impeded to efficiently cary every) or if Frod is too large (eg. next to where evergy is released).
Q: why is the Sun's envelope convective? Or a protostar? why in a RSG? Why the core of a massive star is? What if K Plocifly in creases in the star (eg. because of recombination)

References:
Cox 8 Gigli, vol. 1 , chapter 14
Schwarzschild, chapter 7
Jermynetal. 2023
Andes et al. 2022
Kippenhan, Weigert, Weiss, chapter 6
$h_{\text {Hp }}: / /$ om pine. Kits. ucsb. edu/omPine/stars17/cantiello 2

